Skip to main content
Log in

Explicit coverings of families of elliptic surfaces by squares of curves

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that, for each \(n>0\), there is a family of elliptic surfaces which are covered by the square of a curve of genus \(2n+1\), and whose Hodge structures have an action by \({{\mathbb {Q}}}(\sqrt{-n})\). By considering the case \(n=3\), we show that one particular family of K3 surfaces are covered by the squares of curves of genus 7. Using this, we construct a correspondence between the square of a curve of genus 7 and a general K3 surface in \({\mathbb {P}}^4\) with 15 ordinary double points up to a map of finite degree of K3 surfaces. This gives an explicit proof of the Kuga–Satake–Deligne correspondence for these K3 surfaces and any K3 surfaces related to them by maps of finite degree, and further, a proof of the Hodge conjecture for the squares of these surfaces. We conclude that the motives of these surfaces are Kimura-finite. Our analysis gives a birational equivalence between a moduli space of curves with additional data and the moduli space of these K3 surfaces with a specific elliptic fibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Boissière, S., Sarti, A., Veniani, D.C.: On prime degree isogenies between K3 surfaces. Rend. Circolo Mat. Palermo Ser. 2 66(1), 3–18 (2017)

    Article  MathSciNet  Google Scholar 

  2. Boxer, G., Calegari, F., Gee, T., Pilloni, V.: Abelian surfaces over totally real fields are potentially modular. arXiv:1812.09269

  3. Buskin, N.: Every rational Hodge isometry between two K3 surfaces is algebraic. J. Reine Angew. Math. 755, 127–150 (2019). https://doi.org/10.1515/crelle-2017-0027

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassels, J.W.S.: Rational Quadratic Forms. Academic Press, London (1968)

    MATH  Google Scholar 

  5. Catanese, F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math. 122, 1–44 (2000)

    Article  MathSciNet  Google Scholar 

  6. Cavalieri, R.: Moduli spaces of pointed rational curves, notes of lectures given at the Fields Institute. https://www.math.colostate.edu/~renzo/teaching/Moduli16/Fields.pdf

  7. Cox, D.: Mordell–Weil groups of elliptic curves over \(\cal{C} (t)\) with \(p_g = 0\) or 1. Duke Math. J. 49(3), 677–689 (1982)

    Article  MathSciNet  Google Scholar 

  8. Cox, D., Zucker, S.: Intersection numbers of sections of elliptic surfaces. Inv. Math. 53, 1–44 (1979)

    Article  MathSciNet  Google Scholar 

  9. Deligne, P.: La Conjecture de Weil pour les surfaces \(K\)3. Inventiones Math. 15, 206–226 (1972)

    Article  MathSciNet  Google Scholar 

  10. Deligne, P.: Catégories tensorielles. Mosc. Math J. 2(2), 227–248 (2002)

    Article  MathSciNet  Google Scholar 

  11. Dokchitser, T., Dokchitser, V.: Local invariants of isogenous elliptic curves. Trans. Am. Math. Soc. 367(6), 4339–4358 (2015)

    Article  MathSciNet  Google Scholar 

  12. Eklund, D.: Curves on Heisenberg invariant quartics in projective 3-space. Eur. J. Math. 4(3), 931–995 (2018)

    Article  MathSciNet  Google Scholar 

  13. Frapporti, D.: Mixed quasi-étale surfaces, new surfaces of general type with \(p_g=0\) and their fundamental group. Collect. Math. 64(3), 293–311 (2013)

    Article  MathSciNet  Google Scholar 

  14. Frapporti, D., Pignatelli, R.: Mixed quasi-étale quotients with arbitrary singularities. Glasg. Math. J. 57(1), 143–165 (2015)

    Article  MathSciNet  Google Scholar 

  15. Festi, D., Veniani, D.C.: Counting elliptic fibrations on K3 surfaces. arXiv:2102.09411

  16. Garbagnati, A., Penegini, M.: K3 surfaces with a non-symplectic automorphism and product-quotient surfaces. Rev. Mat. Iberoam. 31, 1277–1310 (2015). (vol. 4)

    Article  MathSciNet  Google Scholar 

  17. Garbagnati, A., Sarti, A.: Kummer surfaces and K3 surfaces with \((\mathbb{Z}/2\mathbb{Z})^4\) symplectic action. Rocky Mt. J. Math 46(4), 1141–1205 (2016)

    Article  Google Scholar 

  18. Garrett, P.: Sporadic isogenies to orthogonal groups. Unpublished notes. http://www.math.umn.edu/~garrett/m/v/sporadic_isogenies.pdf

  19. Harder, A., Thompson, A.: The geometry and moduli of K3 surfaces. In: Laza, R., Schütt, M., Yui, N. (eds.) Calabi-Yau varieties: arithmetic, geometry, and physics, Fields Institute Monographs, vol. 34. Springer, Berlin (2015)

    Google Scholar 

  20. Huybrechts, D.: Lectures on K3 Surfaces. Cambridge Studies in Advanced Mathematics, vol. 158. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  21. Kimura, S.I.: Chow motives can be finite-dimensional, in some sense. Math. Annal. 331(1), 173–201 (2005)

    Article  Google Scholar 

  22. Kloosterman, R.: Classification of all Jacobian elliptic fibrations on certain K3 surfaces. J. Math. Soc. Jpn. 58(3), 665–680 (2006)

    Article  MathSciNet  Google Scholar 

  23. Knudsen, F.: The projectivity of the moduli space of stable curves, II: The stacks. Math. Scand. 52, 161–199 (1983)

    Article  MathSciNet  Google Scholar 

  24. Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface. J. Algebr. Geom. 23(4), 599–667 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kuga, M., Satake, I.: Abelian Varieties attached to polarized \(K\)3-surfaces. Math. Annal. 169, 239–242 (1967)

    Article  Google Scholar 

  26. Landherr, W.: Äquivalenz Hermitescher Formen über einem beliebigen algebraischen Zahlkörper. Abh. Math. Sem. Hamburg Univ. 11, 245–248 (1936). https://www.maths.ed.ac.uk/~v1ranick/papers/landherr.pdf

  27. Laterveer, R.: A family of K3 surfaces having finite-dimensional motive. Arch. Math. 106, 515–524 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lombardo, G.: Abelian varieties of Weil type and Kuga-Satake varieties. Tohoku Math. J. Sec. Ser. 53(3), 453–466 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Lombardo, G., Peters, C., Schütt, M.: Abelian fourfold of Weil type and certain K3 double planes. Rend. Semin. Mat. Univ. Politec. Torino 71(3–4), 339–383 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Mazza, C.: Schur functors and motives. arXiv:1010.3932

  31. Miranda, R.: The basic theory of elliptic surfaces. Dissertation for the degree of Dottorato di Ricerca in Matematica, Pisa (1989). https://www.math.colostate.edu/~miranda/BTES-Miranda.pdf

  32. Morrison, D.R.: On K3 surfaces with large Picard number. Inv. Math. 75, 105–121 (1984)

    Article  MathSciNet  Google Scholar 

  33. Mukai, S.: On the moduli space of bundles on K3 surfaces, I. In: Vector Bundles on Algebraic Varieties. Tata Institute of Fundamental Research. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  34. Nikulin, V.: On Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 278–293 (1975). (Translation: Math. USSR Izv. 9(2), 1975)

    MathSciNet  Google Scholar 

  35. Nishiyama, K.: The Jacobian fibrations on some K3 surfaces and their Mordell-Weil groups. Jpn. J. Math. (N.S.) 22, 293–347 (1996)

    Article  MathSciNet  Google Scholar 

  36. Paranjape, K.: Abelian varieties associated to certain K3 surfaces. Comput. Math. 68, 11–22 (1988)

    MathSciNet  MATH  Google Scholar 

  37. Schütt, M., Shioda, T.: Elliptic surfaces. arXiv:0907.0298

  38. Schlickewei, U.: The Hodge conjecture for self-products of certain K3 surfaces. J. Algebra 324(3), 507–529 (2010)

    Article  MathSciNet  Google Scholar 

  39. Shimada, I.: Table of all \(ADE\)-types of singular fibers of elliptic K3 surfaces and the torsion parts of their Mordell-Weil groups. http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints/EllipticK3/Table.pdf

  40. van Geemen, B.: Kuga–Satake varieties and the Hodge conjecture. In: The Arithmetic and Geometry of Algebraic Cycles, pp. 51–82. Springer, Dordrecht (2000)

    Chapter  Google Scholar 

Download references

Acknowledgements

C. Ingalls was partially supported by an NSERC Discovery Grant. A. Logan thanks the Tutte Institute for Mathematics and Computation for its support of his external research. A. Logan and O. Patashnick thank the Institut Henri Poincaré and the organizers of the Reinventing Rational Points program for their support and hospitality during their spring 2019 stay. We thank the referee for detailed and helpful reports, Frank Calegari and Cecília Salgado for interesting discussions, and a preliminary reviewer for a very helpful comment vis-à-vis the Hodge conjecture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Ingalls.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingalls, C., Logan, A. & Patashnick, O. Explicit coverings of families of elliptic surfaces by squares of curves. Math. Z. 302, 1191–1238 (2022). https://doi.org/10.1007/s00209-022-03090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-022-03090-9

Keywords

Mathematics Subject Classification

Navigation