Skip to main content
Log in

On the Shafarevich conjecture for Enriques surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Enriques surfaces are minimal surfaces of Kodaira dimension 0 with \(b_{2}=10\). If we work with a field of characteristic away from 2, Enriques surfaces admit double covers which are K3 surfaces. In this paper, we prove the Shafarevich conjecture for Enriques surfaces by reducing the problem to the case of K3 surfaces. In our formulation of the Shafarevich conjecture, we use the notion “admitting a cohomological good K3 cover”, which includes not only good reduction but also flower pot reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bădescu, L.: Algebraic Surfaces. Universitext. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3512-3. Translated from the 1981 Romanian original by Vladimir Maşek and revised by the author (2001)

  2. Borel, A.: Arithmetic properties of linear algebraic groups. In: Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pp. 10–22. Institut Mittag-Leffler, Djursholm (1963)

  3. Bright, M., Logan, A., van Luijk, R.: Finiteness results for K3 surfaces over arbitrary fields. Eur. J. Math. (2019). https://doi.org/10.1007/s40879-019-00337-4

    Article  MATH  Google Scholar 

  4. Chiarellotto, B., Lazda, C.: Combinatorial degenerations of surfaces and Calabi–Yau threefolds. Algebra Number Theory 10(10), 2235–2266 (2016). https://doi.org/10.2140/ant.2016.10.2235

    Article  MathSciNet  MATH  Google Scholar 

  5. Faltings, G., Wüstholz, G., Grunewald, F., Schappacher, N., Stuhler, U.: Rational Points, 3rd edn. Aspects of Mathematics, E6. Friedr. Vieweg & Sohn, Braunschweig (1992). https://doi.org/10.1007/978-3-322-80340-5. Papers from the seminar held at the Max-Planck-Institut für Mathematik, Bonn/Wuppertal, 1983/1984, With an appendix by Wüstholz (1992)

  6. Fantechi, B., Göttsche, L., Illusie, L., Kleiman, S.L., Nitsure, N., Vistoli, A.: Fundamental algebraic geometry. In: Mathematical Surveys and Monographs, vol. 123. American Mathematical Society, Providence (2005). Grothendieck’s FGA explained (2005)

  7. Grothendieck, A.: Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses. In: Séminaire Bourbaki, vol. 9, Exp. No. 290, pp. 199–219. Soc. Math. France, Paris (1995)

  8. Grothendieck, A.: Le groupe de Brauer. II. Théorie cohomologique. In: Séminaire Bourbaki, vol. 9, Exp. No. 297, pp. 287–307. Soc. Math. France, Paris (1995)

  9. Harada, S., Hiranouchi, T.: Smallness of fundamental groups for arithmetic schemes. J. Number Theory 129(11), 2702–2712 (2009). https://doi.org/10.1016/j.jnt.2009.03.010

    Article  MathSciNet  MATH  Google Scholar 

  10. Javanpeykar, A.: Néron models and the arithmetic Shafarevich conjecture for certain canonically polarized surfaces. Bull. Lond. Math. Soc. 47(1), 55–64 (2015). https://doi.org/10.1112/blms/bdu095

    Article  MathSciNet  MATH  Google Scholar 

  11. Javanpeykar, A., Loughran, D.: Complete intersections: moduli, Torelli, and good reduction. Math. Ann. 368(3–4), 1191–1225 (2017). https://doi.org/10.1007/s00208-016-1455-5

    Article  MathSciNet  MATH  Google Scholar 

  12. Javanpeykar, A., Loughran, D.: Good reduction of Fano threefolds and sextic surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 18(2), 509–535 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Knutson, D.: Algebraic spaces. In: Lecture Notes in Mathematics, vol. 203. Springer, Berlin (1971)

  14. Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983). https://doi.org/10.1007/978-1-4757-1810-2

    Book  MATH  Google Scholar 

  15. Lawrence, B., Sawin, W.: The Shafarevich conjecture for hypersurfaces in abelian varieties. preprint (2020). arXiv:2004.09046 (2020)

  16. Liedtke, C.: Arithmetic moduli and lifting of Enriques surfaces. J. Reine Angew. Math. 706, 35–65 (2015). https://doi.org/10.1515/crelle-2013-0068

    Article  MathSciNet  MATH  Google Scholar 

  17. Liedtke, C., Matsumoto, Y.: Good reduction of K3 surfaces. Compos. Math. 154(1), 1–35 (2018)

    Article  MathSciNet  Google Scholar 

  18. Matsumoto, Y.: Good reduction criterion for K3 surfaces. Math. Z. 279(1–2), 241–266 (2015). https://doi.org/10.1007/s00209-014-1365-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagamachi, I., Takamatsu, T.: The Shafarevich conjecture and some extension theorems for proper hyperbolic polycurves. Preprint arXiv:1911.01022 (2019)

  20. Ohashi, H.: On the number of Enriques quotients of a \(K3\) surface. Publ. Res. Inst. Math. Sci. 43(1), 181–200 (2007). http://projecteuclid.org/euclid.prims/1199403814

  21. Scholl, A.J.: A finiteness theorem for del Pezzo surfaces over algebraic number fields. J. Lond. Math. Soc. (2) 32(1), 31–40 (1985). https://doi.org/10.1112/jlms/s2-32.1.31

    Article  MathSciNet  MATH  Google Scholar 

  22. She, Y.: The unpolarized Shafarevich conjecture for K3 surfaces. Preprint (2017). arXiv:1705.09038 (2017)

  23. Takamatsu, T.: On a cohomological generalization of the Shafarevich conjecture for K3 surfaces. Preprint arXiv:1810.12279 (2018). (To appear in Algebra & Number Theory)

  24. Takamatsu, T.: Reduction of bielliptic surfaces. Preprint (2020). arXiv:2001.06855 (2020)

Download references

Acknowledgements

The author is deeply grateful to his advisor Naoki Imai for his deep encouragement and helpful advice. The author also thanks Tetsushi Ito for the proof of Proposition 2.5, Yohsuke Matsuzawa for helpful suggestions, and Yuya Matsumoto for pointing out my misunderstandings about cohomologies of K3 double covers (Remark 3.3). Moreover, the author thanks the referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppei Takamatsu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamatsu, T. On the Shafarevich conjecture for Enriques surfaces. Math. Z. 298, 489–495 (2021). https://doi.org/10.1007/s00209-020-02623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-020-02623-4

Keywords

Mathematics Subject Classification

Navigation