Skip to main content
Log in

An index formula for the intersection Euler characteristic of an infinite cone

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The aim of this article is to establish an index formula for the intersection Euler characteristic of a cone. The main actor is the model Witten Laplacian on the infinite cone. First, we study its spectral properties and establish a McKean-Singer type formula. We also give an explicit formula for the zeta function of the model Witten Laplacian. In a second step, we apply local index techniques to the model Witten Laplacian. By combining these two steps, we express the absolute and relative intersection Euler characteristic of the cone as a sum of two terms, a term which is local, and a second term which is the Cheeger invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.(eds): Handbook of mathematical functions with formulas, graphs, and mathematical tables. 10th printing, with corrections. National Bureau of Standards. A Wiley-Interscience Publication. New York etc.: John Wiley & Sons. xiv (1972)

  2. Albin, P., Rochon, F., Sher, D.: A Cheeger-Müller theorem for manifolds with wedge singularities (2018). arXiv:1807.02178v1

  3. Albin, P., Rochon, F., Sher, D.: Analytic torsion and R-torsion of Witt representations on manifolds with cusps. Duke Math. J. 167(10), 1883–1950 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Albin, P., Rochon, F., Sher, D.: Resolvent, heat kernel and torsion under degeneration to fibered cusps. to appear (Memoirs of the AMS) (2019). arXiv:1410.8406

  5. Atiyah, M., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math. 19, 279–330 (1973)

    MathSciNet  MATH  Google Scholar 

  6. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Paperback ed. Grundlehren Text Editions. Berlin: Springer. ix, (2004)

  7. Bismut, J.-M., Cheeger, J.: Families index for manifolds with boundary, superconnections, and cones. I: Families of manifolds with boundary and Dirac operators. J. Funct. Anal. 89(2), 313–363 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller. With an appendix by François Laudenbach. Astérisque. 205. Paris: Société Mathématique de France (1992)

  9. Bismut, J.-M., Zhang, W.: Milnor and Ray-Singer metrics on the equivariant determinant of a flat vector bundle. Geom. Funct. Anal. 4(2), 136–212 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Brüning, J., Seeley, R.: The resolvent expansion for second order regular singular operators. J. Funct. Anal. 73, 369–429 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Brüning, J., Seeley, R.: An index theorem for first order regular singular operators. Am. J. Math. 110(4), 659–714 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Brüning, J., Lesch, M.: Kähler-Hodge theory for conformal complex cones. Geom. Funct. Anal. 3(5), 439–473 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Brüning, J., Ma, X.: An anomaly formula for Ray-Singer metrics on manifolds with boundary. Geom. Funct. Anal. 16(4), 767–837 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Chern, S.-S.: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. 2(45), 747–752 (1944)

    MathSciNet  MATH  Google Scholar 

  16. Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. 2(109), 259–322 (1979)

    MathSciNet  MATH  Google Scholar 

  17. Cheeger, J.: On the spectral geometry of spaces with cone-like singularities. Proc. Nat. Acad. Sci. USA 76(5), 2103–2106 (1979)

    MathSciNet  MATH  Google Scholar 

  18. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. Geometry of the Laplace operator, Honolulu/Hawaii 1979. In: Proc. Symp. Pure Math., Vol. 36, 91-146 (1980)

  19. Cheeger, J.: Spectral geometry of singular Riemannian spaces. J. Differential Geom. 18(4), 575–657 (1984)

    MathSciNet  MATH  Google Scholar 

  20. Cheeger, J., Goresky, M., MacPherson, R.: \(L^{2}\)-cohomology and intersection homology of singular algebraic varieties. In Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pp. 303–340. Princeton Univ. Press, Princeton (1982)

  21. Dar, A.: Intersection R-torsion and analytic torsion for pseudomanifolds. Math. Z. 194 194(2), 193–216 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Gilkey, P.B.: The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary. Adv. Math. 15, 334–360 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19, 135–165 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72, 77–129 (1983)

    MathSciNet  MATH  Google Scholar 

  25. Hardy, G.H.: Summation of a series of polynomials of Laguerre. Addendum. J. Lond. Math. Soc. 7, 192 (1932)

    MathSciNet  MATH  Google Scholar 

  26. Hartmann, L., Spreafico, M.: The analytic torsion of a cone over a sphere. J. Math. Pures Appl. 93(9), 408–435 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Hartmann, L., Spreafico, M.: The analytic torsion of a cone over an odd dimensional manifold. J. Geom. Phys. 61(3), 624–657 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Lesch, M.: Operators of Fuchs type, conical singularitites, and asymptotic methods. Teubner-Texte zur Mathematik 136. Stuttgart: B. G. Teubner (1997)

  29. Lesch, M.: A gluing formula for the analytic torsion on singular spaces. Anal. PDE 6(1), 221–256 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Ludwig, U.: An index formula for the intersection Euler characteristic of an infinite cone. Math. Acad. Sci. Paris Comp. Rendus 355, 94–98 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Ludwig, U.: Comparison between two complexes on a singular space. J. Reine Angew. Math. 724, 1–52 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Ludwig, U.: An extension of a theorem by Cheeger and Müller to spaces with isolated conical singularities. Comp. Rendus Math. Acad. Sci. Paris 356(3), 327–332 (2018)

    MATH  Google Scholar 

  33. Mathai, V., Quillen, D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25, 85–110 (1986)

    MathSciNet  MATH  Google Scholar 

  34. Müller, W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978)

    MathSciNet  MATH  Google Scholar 

  35. Müller, W., Vertman, B.: The metric anomaly of analytic torsion on manifolds with conical singularities. Commun. Partial Differ. Equ. 39(1), 146–191 (2014)

    MathSciNet  MATH  Google Scholar 

  36. O’Neill, B.: Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, 103. New York-London etc.: Academic Press, vol. XIII (1983)

  37. Roe, J.: Elliptic operators, topology and asymptotic methods, volume 395 of Pitman Research Notes in Mathematics Series. Longman, Harlow, second edition (1998)

  38. Vertman, B.: Analytic torsion of a bounded generalized cone. Commun. Math. Phys. 290(3), 813–860 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Vishik, S.M.: Generalized Ray-Singer conjecture. I: A manifold with a smooth boundary. Commun. Math. Phys. 167(1), 1–102 (1995)

    MathSciNet  MATH  Google Scholar 

  40. Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge mathematical library, 2nd edn. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Acknowledgements

First and foremost, I would like to thank Jean-Michel Bismut for many discussions and for his continuous and patient support. I have profited from discussions with Juan Gil, Thomas Krainer and Gerardo Mendoza during a one week stay in Altoona and Philadelphia in summer 2014. Many thanks to the participants in the “Groupe de travail sur l’opérateur de Dirac” Paolo Antonini, Sara Azzali, Bo Liu, Xiaonan Ma, Martin Puchol, Nikhil Savale and Shu Shen. The author has been supported by the Marie Curie Intra European Fellowship (within the 7th European Community Framework Programme) COMPTORSING and wishes to thank the Département de Mathématiques, Université Paris-Orsay, for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Ludwig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, U. An index formula for the intersection Euler characteristic of an infinite cone. Math. Z. 296, 99–126 (2020). https://doi.org/10.1007/s00209-019-02423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02423-5

Keywords

Mathematics Subject Classification

Navigation