Skip to main content
Log in

A non-Archimedean Ohsawa–Takegoshi extension theorem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove an Ohsawa–Takegoshi-type extension theorem on the Berkovich closed unit disc over certain non-Archimedean fields. As an application, we establish a non-Archimedean analogue of Demailly’s regularization theorem for quasisubharmonic functions on the Berkovich unit disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. If \(\Gamma \) is a subtree of X that contains \(x_G\), we adopt the following conventions: if \(\Gamma \supsetneq \{ x_G \}\), then \({{\mathrm{Ends}}}(\Gamma )\) consists of those points in \(\Gamma \) with a unique tangent direction in \(\Gamma \); if \(\Gamma = \{ x_G \}\), then \({{\mathrm{Ends}}}(\Gamma ) = \Gamma \).

References

  1. Ax, James: Zeros of polynomials over local fields—the Galois action. J. Algebra 15, 417–428 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields, volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1990)

  3. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math. 78, 5–161 (1994)

  4. Berndtsson, Bo: The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly-Fefferman. Ann. Inst. Fourier (Grenoble) 46(4), 1083–1094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndtsson, B.: The openness conjecture for plurisubharmonic functions. arXiv:1305.5781

  6. Boucksom, Sébastien, Favre, Charles, Jonsson, Mattias: Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci. 44(2), 449–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boucksom, Sébastien, Favre, Charles, Jonsson, Mattias: Solution to a non-Archimedean Monge-Ampère equation. J. Am. Math. Soc. 28(3), 617–667 (2015)

    Article  MATH  Google Scholar 

  8. Boucksom, Sébastien, Favre, Charles, Jonsson, Mattias: Singular semipositive metrics in non-Archimedean geometry. J. Algebraic Geom. 25(1), 77–139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis, volume 261 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, (1984). A systematic approach to rigid analytic geometry

  10. Boucksom, S., Jonsson, M.: Tropical and non-Archimedean limits of degenerating families of volume forms. arXiv:1605.05277. To appear in J. Éc. polytech. Math

  11. Błocki, Zbigniew: Suita conjecture and the Ohsawa–Takegoshi extension theorem. Invent. Math. 193(1), 149–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bosch, S.: Lectures on formal and rigid geometry, volume 2105 of Lecture Notes in Mathematics. Springer, Cham (2014)

  13. Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line, volume 159 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2010)

  14. Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. arXiv:1204.6277

  15. Demailly, Jean-Pierre: Regularization of closed positive currents and intersection theory. J. Algebraic Geom. 1(3), 361–409 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Demailly, J.-P.: On the Ohsawa-Takegoshi-Manivel \(L^2\) extension theorem. In: Complex analysis and geometry (Paris, 1997), volume 188 of Progr. Math., pp. 47–82. Birkhäuser, Basel (2000)

  17. Demailly, J.-P.: Analytic methods in algebraic geometry, volume 1 of Surveys of Modern Mathematics. International Press, Somerville, MA; Higher Education Press, Beijing (2012)

  18. Dinh, Tien-Cuong, Sibony, Nessim: Super-potentials of positive closed currents, intersection theory and dynamics. Acta Math. 203(1), 1–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Favre, Charles, Jonsson, Mattias: Valuative analysis of planar plurisubharmonic functions. Invent. Math. 162(2), 271–311 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Favre, Charles, Rivera-Letelier, Juan: Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. 335(2), 311–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gubler, W.: Local heights of subvarieties over non-Archimedean fields. J. Reine Angew. Math. 498, 61–113 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jonsson, M.: Dynamics of Berkovich spaces in low dimensions. In: Berkovich spaces and applications, volume 2119 of Lecture Notes in Math., pp. 205–366. Springer, Cham (2015)

  23. Kedlaya, K.S.: Semistable reduction for overconvergent \(F\)-isocrystals, IV: local semistable reduction at nonmonomial valuations. Compos. Math. 147(2), 467–523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, D.: A remark on the approximation of plurisubharmonic functions. C. R. Math. Acad. Sci. Paris 352(5), 387–389 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Manivel, L.: Un théorème de prolongement \(L^2\) de sections holomorphes d’un fibré hermitien. Math. Z. 212(1), 107–122 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustaă, M., Nicaise, J.: Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton. Algebr. Geom. 2(3), 365–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. McNeal, J.D., Varolin, D.: Analytic inversion of adjunction: \(L^2\) extension theorems with gain. Ann. Inst. Fourier (Grenoble) 57(3), 703–718 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nadel, A.M.: Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature. Ann. of Math. (2) 132(3), 549–596 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\) holomorphic functions. Math. Z. 195(2), 197–204 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schmidt, T.: Forms of an affinoid disc and ramification. Ann. Inst. Fourier (Grenoble) 65(3), 1301–1347 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Siu, Y.-T.: The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. In: Geometric complex analysis (Hayama, 1995), pp. 577–592. World Sci. Publ., River Edge, NJ (1996)

  32. Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Temkin, M.: Metrization of differential pluriforms on Berkovich analytic spaces. In: Baker, M., Payne, S. (eds.) Nonarchimedean and tropical geometry. Simons Symposia. Springer, Cham (2016)

    Google Scholar 

  34. Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d’Arakelov. PhD thesis, Université Rennes 1 (2005)

  35. Zhang, Shouwu: Small points and adelic metrics. J. Algebraic Geom. 4(2), 281–300 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank my advisor, Mattias Jonsson, for suggesting the problem and for his invaluable help, guidance, and support. I would also like to thank Kiran Kedlaya, Jérôme Poineau, and Daniele Turchetti for helpful conversations regarding Lemma 2.1. I am grateful to Takumi Murayama and Emanuel Reinecke for their many comments on a previous draft. Finally, I would like to thank the anonymous referee for their many helpful comments, and for pointing out an error in a previous version. This work was partially supported by NSF grant DMS-1600011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Stevenson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, M. A non-Archimedean Ohsawa–Takegoshi extension theorem. Math. Z. 291, 279–302 (2019). https://doi.org/10.1007/s00209-018-2083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2083-4

Navigation