Skip to main content
Log in

Stratification for the singular set of approximate harmonic maps

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The aim of this note is to extend the results in Naber and Valtorta (Ann Math (2) 185:131–227, https://doi.org/10.4007/annals.2017.185.1.3, 2017) to the case of approximate harmonic maps. More precisely, we will proved that the singular strata \(\mathcal {S}^k(u)\) of an approximate harmonic map are k-rectifiable, and we will show effect bounds on the quantitative strata. In the process we will simplify many of the arguments from Naber and Valtorta (2017), and in particular we produce a new main covering lemmas which vastly simplifies the older argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren Jr. F.J.: Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1. \(Q\)-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2. World Scientific Publishing Co., Inc, River Edge (with a preface by Jean E. Taylor and Vladimir Scheffer) (2000)

  2. Azzam, J., Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones’ square function: part II. Geom. Funct. Anal. 25, 1371–1412 (2015). https://doi.org/10.1007/s00039-015-0334-7

    Article  MathSciNet  MATH  Google Scholar 

  3. Bethuel, F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78, 417–443 (1993). https://doi.org/10.1007/BF02599324

    Article  MathSciNet  MATH  Google Scholar 

  4. Breiner, C., Lamm, T.: Quantitative stratification and higher regularity for biharmonic maps. Manuscr. Math. 148, 379–398 (2015). https://doi.org/10.1007/s00229-015-0750-x, arXiv:1410.5640

    Article  MathSciNet  Google Scholar 

  5. Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of harmonic map flow. Calc. Var. PDE (2013). arXiv:1308.2514 (accepted)

  6. Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of mean curvature flow. Geom. Funct. Anal. 23, 828–847 (2013). https://doi.org/10.1007/s00039-013-0224-9, arXiv:1308.2514

    Article  MathSciNet  Google Scholar 

  7. Cheeger, J., Naber, A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191, 321–339 (2013). https://doi.org/10.1007/s00222-012-0394-3, arXiv:1103.1819

    Article  MathSciNet  Google Scholar 

  8. Cheeger, J., Naber, A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Comm. Pure Appl. Math. 66, 965–990 (2013). https://doi.org/10.1002/cpa.21446, arXiv:1107.3097

    Article  MathSciNet  Google Scholar 

  9. Cheeger, J., Naber, A., Valtorta, D.: Critical sets of elliptic equations. Commun. Pure Appl. Math. 68, 173–209 (2015). https://doi.org/10.1002/cpa.21518, arXiv:1207.4236

    Article  MathSciNet  Google Scholar 

  10. Coron, J.-M., Gulliver, R.: Minimizing \(p\)-harmonic maps into spheres. J. Reine Angew. Math. 401, 82–100 (1989). https://doi.org/10.1515/crll.1989.401.82

    Article  MathSciNet  MATH  Google Scholar 

  11. David, G., Semmes, S.: Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and Monographs, vol. 38. American Mathematical Society, Providence (1993). https://doi.org/10.1090/surv/038

  12. David, G., Toro, T.: Reifenberg parameterizations for sets with holes. Mem. Am. Math. Soc. 215, vi+102 (2012). https://doi.org/10.1090/S0065-9266-2011-00629-5

    Article  MathSciNet  Google Scholar 

  13. Ding, W., Li, J., Li, W.: Nonstationary weak limit of a stationary harmonic map sequence. Commun. Pure Appl. Math. 56, 270–277 (2003). https://doi.org/10.1002/cpa.10058

    Article  MathSciNet  MATH  Google Scholar 

  14. Edelen, N.S., Naber, A.C., Valtorta, D.: Quantitative Reifenberg Theorem for Measures (2016). arXiv:1612.08052

  15. Focardi, M., Marchese, A., Spadaro, E.: Improved estimate of the singular set of Dir-minimizing \(Q\)-valued functions via an abstract regularity result. J. Funct. Anal. 268, 3290–3325 (2015). https://doi.org/10.1016/j.jfa.2015.02.011

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, F.-H.: A remark on the map \(x/\vert x\vert \). C. R. Acad. Sci. Paris Sér. I Math. 305, 529–531 (1987)

    MathSciNet  Google Scholar 

  17. Lin, F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) 149, 785–829 (1999). https://doi.org/10.2307/121073, arXiv:9905214

    Article  MathSciNet  Google Scholar 

  18. Moser, R.: Partial Regularity for Harmonic Maps and Related Problems. World Scientific, Hackensack (2005). https://doi.org/10.1142/9789812701312

  19. Naber, A., Valtorta, D.: Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. Math. (2) 185, 131–227 (2017). https://doi.org/10.4007/annals.2017.185.1.3

    Article  MathSciNet  Google Scholar 

  20. Reifenberg, E.R.: Solution of the Plateau Problem for \(m\)-dimensional surfaces of varying topological type. Acta Math. 104, 1–92 (1960). https://doi.org/10.1007%2FBF02547186

    Article  MathSciNet  Google Scholar 

  21. Schoen, R.M.: Analytic aspects of the harmonic map problem. In: Seminar on Nonlinear Partial Differential Equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., vol. 2. Springer, New York, pp. 321–358 (1984). https://doi.org/10.1007/978-1-4612-1110-5_17

    Google Scholar 

  22. Tolsa, X.: Characterization of \(n\)-rectifiability in terms of Jones’ square function: part I. Calc. Var. Partial Differ. Equ. 54, 3643–3665 (2015). https://doi.org/10.1007/s00526-015-0917-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Toro, T.: Geometric conditions and existence of bi-Lipschitz parameterizations. Duke Math. J. 77, 193–227 (1995). https://doi.org/10.1215/S0012-7094-95-07708-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Toro, T., Wang, C.: Compactness properties of weakly \(p\)-harmonic maps into homogeneous spaces. Indiana Univ. Math. J. 44, 87–113 (1995). https://doi.org/10.1512/iumj.1995.44.1979

    Article  MathSciNet  MATH  Google Scholar 

  25. Xin, Y.: Geometry of Harmonic Maps, Progress in Nonlinear Differential Equations and their Applications, vol. 23. Birkhäuser, Boston (1996). https://doi.org/10.1007/978-1-4612-4084-6

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Valtorta.

Additional information

Aaron Naber has been supported by National Science Foundation grant DMS-1406259, Daniele Valtorta has been supported by Swiss National Science Foundation project 200021_159403/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naber, A., Valtorta, D. Stratification for the singular set of approximate harmonic maps. Math. Z. 290, 1415–1455 (2018). https://doi.org/10.1007/s00209-018-2068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2068-3

Keywords

Mathematics Subject Classification

Navigation