Skip to main content
Log in

Borel–Moore motivic homology and weight structure on mixed motives

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

By defining and studying functorial properties of the Borel–Moore motivic homology, we identify the heart of Bondarko–Hébert’s weight structure on Beilinson motives with Corti–Hanamura’s category of Chow motives over a base, therefore answering a question of Bondarko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We will recall the definition of motivic cohomology groups in Definition 4.1.

  2. Recall that this means that the canonical closed immersion from the normal cone of \(Z'\) in \(X'\) to the pull-back by p of the normal cone of Z in X [20, B.6.1] is an isomorphism.

  3. \(\phi _X\) is an element of \(H^{BM}_{1,0}({\mathbb {G}}_{m,X}/X) \simeq {\mathbb {Z}}\times {\mathcal {O}}^*(X)\), which corresponds to the fundamental parameter of \({\mathbb {G}}_m\), see Lemma 3.6.

  4. The index i here means the i-th graded part of the total term.

  5. In view of the theory of generic motives, \(\hat{H}^{BM}_{n,i}(x)\) is nothing else but the Borel–Moore homology of the generic motive associated to the residue field of x, which only depends on the residue field, see [13].

  6. The isomorphism is constructed in the following way: there is a natural map \(\hat{H}^{BM}_{p,q}(z')\rightarrow \hat{H}^{BM}_{p,q}(z)\) defined in a similar way as the map \(\phi ^{*}_t\) above, and it is an isomorphism because f induces an isomorphism between the residue fields of z and \(z'\), therefore induces an isomorphism between the associated pro-schemes.

  7. Hébert showed that we can replace projective S-schemes by all proper S-schemes [21, Lemme 3.1].

  8. More generally, this assertion holds if S is separated of finite type over an excellent noetherian separated base scheme of dimension at most two (such a scheme is said to be “reasonable” in [7, Definition 1.1.1]).

References

  1. André, Y.: Une Introduction Aux Motifs (Motifs Purs, Motifs Mixtes, Périodes), Panoramas et Synthèses, vol. 17. Société Mathématique de France, Paris (2004)

    Google Scholar 

  2. Ayoub, J.: Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, Astérisque No. 314–315 (2007)

  3. Beĭlinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers, Analyse et topologie sur les espaces singuliers, I (Luminy, 1981), 5–171, Astérisque, 100, Soc. Math. France, Paris (1982)

  4. Bloch, S., Ogus, A.: Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7(1974), 181–201 (1975)

    MathSciNet  MATH  Google Scholar 

  5. Borel, A., Moore, J.C.: Homology theory for locally compact spaces. Mich. Math. J. 7, 137–159 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bondarko, M.V.: Weight structures vs. \(t\)-structures; weight filtrations, spectral sequences, and complexes (for motives and in general). J K Theory 6(3), 387–504 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bondarko, M.V.: Weights for relative motives: relation with mixed complexes of sheaves. Int. Math. Res. Not. IMRN 17, 4715–4767 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Bondarko, M.V., Ivanov, M.A.: On Chow Weight Structures for \(cdh\)-motives with Integral Coefficients. Prepublication (2015)

  9. Cisinski, D.-C., Déglise, F.: Triangulated Categories of Motives. Prepublication (2013)

  10. Cisinski, D.-C., Déglise, F.: Integral mixed motives in equal characteristic. Documenta Math. Extra Volume: Alexander S. Merkurjev’s Sixtieth Birthday, pp. 145–194 (2015)

  11. Colliot-Thélène, J.-L., Hoobler, R., Kahn, B.: The Bloch–Ogus–Gabber theorem, In: Algebraic \(K\)-theory, pp. 31–94, Fields Inst. Commun. 16, Am. Math. Soc., Providence, RI (1997)

  12. Corti, A., Hanamura, M.: Motivic decomposition and intersection Chow groups I. Duke Math. J. 103, 459–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Déglise, F.: Coniveau filtration and mixed motives. Regul. Contemp. Math. 571, 51–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Déglise, F.: Around the Gysin triangle I. Regul. Contemp. Math. 571, 77–116 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Déglise, F.: Motifs génériques. Rendiconti Sem. Mat. Univ. Padova 119, 173–244 (2008)

    Article  Google Scholar 

  16. Déglise, F.: Orientation Theory in Arithmetic Geometry. Prepublication (2014)

  17. Déglise, F.: Around the Gysin triangle II. Doc. Math. 13, 613–675 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Déglise, F.: Modules homotopiques avec transferts et motifs génériques., Ph.D. Thesis of University Paris VII, (December 2002). http://perso.ens-lyon.fr/frederic.deglise/these.html

  19. Deligne, P.: Théorie de Hodge. III. Inst. Hautes Etudes Sci. Publ. Math. 44, 5–77 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fulton, W.: Intersection theory, Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2. Springer, Berlin (1998)

  21. Hébert, D.: Structure de poids à la Bondarko sur les motifs de Beilinson. Compos. Math. 147(5), 1447–1462 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 29, 95–103 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levine, M.: Mixed Motives, Mathematical Surveys and Monographs, vol. 57. American Mathematical Society, Providence (1998)

    Book  Google Scholar 

  24. Levine, M., Morel, F.: Algebraic Cobordism, Springer Monographs in Mathematics. Springer, Berlin (2007)

    Google Scholar 

  25. Mazza, C., Voevodsky, V., Weibel, C.: Lecture notes on motivic cohomology, Clay Mathematics Monographs, 2, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2006)

  26. Rost, M.: Chow groups with coefficients. Doc. Math. 1(16), 319–393 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Suslin, A., Voevodsky, V.: Bloch-Kato conjecture and motivic cohomology with finite coefficients, In: The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), pp. 117–189, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht (2000)

  28. Voevodsky, V.: Triangulated categories of motives over a field.In: Cycles, transfers, and motivic homology theories, pp. 188–238, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ (2000)

  29. Voevodsky, V.: Cohomological theory of presheaves with transfers, In: Cycles, transfers, and motivic homology theories, pp. 87–137. Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ (2000)

Download references

Acknowledgments

I would like to express my gratitude to my thesis advisor, Frédéric Déglise, who kindly shared the basic ideas of this article and helped me greatly during its development. I would also like to thank Mikhail Bondarko for very helpful discussion and advice on a preprint version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Fangzhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fangzhou, J. Borel–Moore motivic homology and weight structure on mixed motives. Math. Z. 283, 1149–1183 (2016). https://doi.org/10.1007/s00209-016-1636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1636-7

Keywords

Navigation