Skip to main content
Log in

Isotypic faithful 2-representations of \({\mathcal {J}}\)-simple fiat 2-categories

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce the class of isotypic 2-representations for finitary 2-categories and the notion of inflation of 2-representations. Under some natural assumptions we show that isotypic 2-representations are equivalent to inflations of cell 2-representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agerholm, T.: Simple \(2\)-representations and classification of categorifications. Ph.D. Thesis, Aarhus University (2011)

  2. Bernstein, J., Frenkel, I., Khovanov, M.: A categorification of the Temperley-Lieb algebra and Schur quotients of \(U(\mathfrak{sl}_2)\) via projective and Zuckerman functors. Sel. Math. New Ser. 5(2), 199–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernstein, J., Gelfand, S.: Tensor products of finite- and infinite-dimensional representations of semisimple Lie algebras. Compos. Math. 41(2), 245–285 (1980)

    MATH  MathSciNet  Google Scholar 

  4. Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \(\mathfrak{sl} _2\)-categorification. Ann. of Math. (2) 167(1), 245–298 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Preprint. arXiv:1212.0791. To appear in Ann. of Math

  6. Ellis, A., Lauda, A.: An odd categorification of quantum \(\mathfrak{sl} (2)\). Preprint. arXiv:1307.7816

  7. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, A.V.: Tensor categories. Manuscript, available from http://www-math.mit.edu/~etingof/tenscat1

  8. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. of Math. (2) 162(2), 581–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freyd, P.: Representations in abelian categories. In: Proceedings of the Conference Categorical Algebra, pp. 95-120 (1966)

  10. Ganter, N., Kapranov, M.: Symmetric and exterior powers of categories. Transform. Groups 19(1), 57–103 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kapranov, M., Voevodsky, V.: \(2\)-categories and Zamolodchikov tetrahedra equations. Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991). Proc. Sympos. Pure Math. 56, Part 2, 177-259. American Mathmatical Society, Providence, RI (1994)

  12. Khovanov, M., Lauda, A.: A categorification of a quantum \(\mathfrak{sl}_n\). Quantum Topol. 1, 1–92 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leinster, T.: Basic bicategories. Preprint. arXiv:math/9810017

  14. Losev, I., Webster, B.: On uniqueness of tensor products of irreducible categorifications. Preprint. arXiv:1303.1336

  15. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  16. Mackaay, M., Thiel, A.-L.: Categorifications of the extended affine Hecke algebra and the affine \(q\). Preprint. arXiv:1302.3102

  17. Mazorchuk, V., Miemietz, V.: Cell \(2\)-representations of finitary \(2\)-categories. Compos. Math. 147, 1519–1545 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mazorchuk, V., Miemietz, V.: Additive versus abelian \(2\)-representations of fiat \(2\)-categories. Mosc. Math. J. 14(3), 595–615 (2014)

    MATH  MathSciNet  Google Scholar 

  19. Mazorchuk, V., Miemietz, V.: Endomorphisms of cell \(2\)-representations. Preprint. arXiv:1207.6236

  20. Mazorchuk, V., Miemietz, V.: Morita theory for finitary \(2\)-categories. Preprint. arXiv:1304.4698. To appear in Quantum Topol

  21. Mazorchuk, V., Miemietz, V.: Transitive \(2\)-categories. Preprint. arXiv:1404.7589

  22. Rouquier, R.: \(2\)-Kac-Moody algebras. Preprint. arXiv:0812.5023

  23. Rouquier, R.: Quiver Hecke algebras and \(2\)-Lie algebras. Algebra Colloq. 19, 359–410 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sartori, A., Stroppel, C.: Categorification of tensor product representations of \(\mathfrak{sl} (k)\). Preprint. arXiv:1407.4267

  25. Soergel, W.: The combinatorics of Harish-Chandra bimodules. J. Reine Angew. Math. 429, 49–74 (1992)

    MATH  MathSciNet  Google Scholar 

  26. Xantcha, Q.: Gabriel \(2\)-Categories. Preprint. arXiv:1310.1586, to appear in J. Lond. Math. Soc

Download references

Acknowledgments

A substantial part of the paper was written during a visit of the second author to Uppsala University, whose hospitality is gratefully acknowledged. The visit was supported by EPSRC grant EP/K011782/1 and by the Swedish Research Council. The first author is partially supported by the Swedish Research Council. The second author is partially supported by EPSRC grant EP/K011782/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Mazorchuk.

Appendix: Weakly fiat potpourri

Appendix: Weakly fiat potpourri

In this section, we collect appropriate reformulations of statements from [1719] (originally for fiat 2-categories) in the more general setup of weakly fiat 2-categories. Let \({\mathscr {C}}\) be a weakly fiat 2-category as defined in Sect. 2.5 with a weak equivalence \(*\).

We write \({\mathbf{P}}\) for the direct sum of all principal representations of \({\mathscr {C}}\). Isomorphism classes of indecomposable projective and simple objects in \(\overline{{\mathbf{P}}}\) are indexed by elements in \({\mathcal {S}}({\mathscr {C}})\) and denoted by \(\hat{P}_{{\mathrm {F}}}\) and \(\hat{L}_{{\mathrm {F}}}\).

Proposition 26

Let \({\mathrm {F}},{\mathrm {G}},{\mathrm {H}}\in {\mathcal {S}}({\mathscr {C}})\).

  1. (i)

    The inequality \({\mathrm {F}}\,\hat{L}_{{\mathrm {G}}}\ne 0\) is equivalent to \({}^*{\mathrm {F}}\le _R {\mathrm {G}}\) and also to \({\mathrm {F}}\le _L {\mathrm {G}}^*\).

  2. (ii)

    The inequality \([{\mathrm {F}}\,\hat{L}_{{\mathrm {G}}}:\hat{L}_{{\mathrm {H}}}]\ne 0\) implies \({\mathrm {H}}\le _L {\mathrm {G}}\).

  3. (iii)

    If \({\mathrm {H}}\le _L {\mathrm {G}}\), then there is \({\mathrm {K}}\in {\mathcal {S}}({\mathscr {C}})\) such that \([{\mathrm {K}}\,\hat{L}_{{\mathrm {G}}}:\hat{L}_{{\mathrm {H}}}]\ne 0\).

  4. (iv)

    If \(\hat{L}_{{\mathrm {F}}}\) occurs in the top or socle of \({\mathrm {H}}\,\hat{L}_{{\mathrm {G}}}\), then \({\mathrm {F}}\) is in the same left cell as \({\mathrm {G}}\).

  5. (v)

    If \({\mathrm {F}}\in {\mathscr {C}}({\texttt {i}},{\texttt {j}})\), then there is a unique (up to scalar) non-zero homomorphism \(\hat{P}_{\mathbbm {1}_{{\texttt {i}}}}\rightarrow {\mathrm {F}}^*\,\hat{L}_{{\mathrm {F}}}\), in particular, \({\mathrm {F}}^*\,\hat{L}_{{\mathrm {F}}}\ne 0\).

Proof

Mutatis mutandis [17, Lemmata 12–15]. \(\square \)

Proposition 27

Let \({\mathcal {L}}\) be a left cell of \({\mathscr {C}}\) and \({\texttt {i}}={\texttt {i}}_{{\mathcal {L}}}\).

  1. (i)

    There is a unique submodule K of \(\hat{P}_{\mathbbm {1}_{{\texttt {i}}}}\) such that

    1. (a)

      every simple subquotient of \(\hat{P}_{\mathbbm {1}_{{\texttt {i}}}}/K\) is annihilated by any \({\mathrm {F}}\in {\mathcal {L}}\);

    2. (b)

      the module K has simple top \(\hat{L}_{{\mathrm {G}}_{{\mathcal {L}}}}\) for some \({\mathrm {G}}_{{\mathcal {L}}}\in {\mathcal {S}}({\mathcal {C}})\) and \({\mathrm {F}}\, \hat{L}_{{\mathrm {G}}_{{\mathcal {L}}}}\ne 0\) for any \({\mathrm {F}}\in {\mathcal {L}}\).

  2. (ii)

    For any \({\mathrm {F}}\in {\mathcal {L}}\) the module \({\mathrm {F}}\, \hat{L}_{{\mathrm {G}}_{{\mathcal {L}}}}\) has simple top \(\hat{L}_{{\mathrm {F}}}\).

  3. (iii)

    We have \({\mathrm {G}}_{{\mathcal {L}}}\in {\mathcal {L}}\).

  4. (iv)

    For any \({\mathrm {F}}\in {\mathcal {L}}\) we have \({}^*{\mathrm {F}}\le _R {\mathrm {G}}_{{\mathcal {L}}}\) and \({\mathrm {F}}\le _L {\mathrm {G}}_{{\mathcal {L}}}^*\).

  5. (v)

    We have \({\mathrm {G}}^*_{{\mathcal {L}}}\in {\mathcal {L}}\).

Proof

Mutatis mutandis [17, Proposition 17]. \(\square \)

The element \({\mathrm {G}}_{{\mathcal {L}}}\in {\mathcal {L}}\) is called the Duflo involution in \({\mathcal {L}}\).

Proposition 28

Let \({\mathcal {J}}\) be a strongly regular two-sided cell in \({\mathscr {C}}\) and \({\mathcal {L}}\) a left cell in \({\mathcal {J}}\). Then for \({\mathrm {G}}\in {\mathcal {L}}\) the following assertions are equivalent.

  1. (a)

    \({\mathrm {G}}={\mathrm {G}}_{{\mathcal {L}}}\).

  2. (b)

    \({\mathrm {G}}^*\in {\mathcal {L}}\).

  3. (c)

    \(\{{\mathrm {G}}\}={\mathcal {L}}\cap {}^*{\mathcal {L}}\).

  4. (d)

    \({\mathrm {G}}={}^*{\mathrm {H}}\) where \(\{{\mathrm {H}}\}={\mathcal {L}}\cap {\mathcal {L}}^*\).

  5. (e)

    \({\mathrm {G}}\,\hat{L}_{{\mathrm {G}}}\ne 0\).

Proof

We have

  • (a) \(\Rightarrow \) (b) by Proposition 27(v);

  • (b) \(\Rightarrow \) (d) as \(|{\mathcal {L}}\cap {\mathcal {L}}^*|=1\);

  • (d) \(\Rightarrow \) (c) applying \({\mathrm {F}}\mapsto {}^*{\mathrm {F}}\);

  • (c) \(\Rightarrow \) (b) applying \({\mathrm {F}}\mapsto {\mathrm {F}}^*\);

  • (b) Rightarrow (a) again as \(|{\mathcal {L}}\cap {\mathcal {L}}^*|=1\).

Finally, (b)\(\Leftrightarrow \)(e) follows from strong regularity of \({\mathcal {J}}\) and Proposition 26(i). \(\square \)

Let \({\mathcal {J}}\) be a strongly regular two-sided cell in \({\mathscr {C}}\) and \({\mathcal {L}}\) a left cell in \({\mathcal {J}}\). To simplify computational expressions, we assume that \({\mathcal {J}}\) is a maximal two-sided cell. In the cell 2-representation \({\mathbf{C}}_{{\mathcal {L}}}\) as defined in Sect. 3.1, we have indecomposable projective objects \(P_{{\mathrm {F}}}\), indecomposable injective objects \(I_{{\mathrm {F}}}\) and simple objects \(L_{{\mathrm {F}}}\), where \({\mathrm {F}}\in {\mathcal {L}}\). Set \({\mathrm {G}}={\mathrm {G}}_{{\mathcal {L}}}\).

Lemma 29

For any \({\mathrm {F}}\in {\mathcal {L}}\) we have \({\mathrm {F}}{\mathrm {G}}\cong {\mathbf{m}}_{{\mathrm {G}}}{\mathrm {F}}\).

Proof

Strong regularity of \({\mathcal {J}}\) implies that \({\mathrm {G}}{\mathrm {G}}=m{\mathrm {G}}\) for some non-negative integer m. Applying this to \(L_{{\mathrm {G}}}\), using exactness of \({\mathrm {G}}\) and a character argument, we see that

$$\begin{aligned} m=[P_{{\mathrm {G}}}:L_{{\mathrm {G}}}]=\dim {\mathrm {End}}(P_{{\mathrm {G}}}). \end{aligned}$$

At the same time, \(\dim {\mathrm {End}}(P_{{\mathrm {G}}})= \dim {\mathrm {Hom}}({\mathrm {G}}\,L_{{\mathrm {G}}},{\mathrm {G}}\,L_{{\mathrm {G}}})\) equals \({\mathbf{m}}_{{\mathrm {G}}}\) by adjunction. Thus \(m={\mathbf{m}}_{{\mathrm {G}}}\).

Strong regularity of \({\mathcal {J}}\) again yields \({\mathrm {F}}{\mathrm {G}}\cong k{\mathrm {F}}\) for some non-negative integer k. Moreover, k is, in fact, positive, since \({\mathrm {F}}{\mathrm {G}}\, L_{{\mathrm {G}}}\ne 0\). Now, computing \({\mathrm {F}}{\mathrm {G}}{\mathrm {G}}\) in two different ways using associativity, and then dividing by k, we obtain \(k={\mathbf{m}}_{{\mathrm {G}}}\). \(\square \)

Proposition 30

Let \({\mathrm {F}}\in {\mathcal {L}}\) and \({\mathrm {H}}\in {\mathcal {J}}\).

  1. (i)

    The projective object \(P_{{\mathrm {F}}}\) is injective.

  2. (ii)

    The object \({\mathrm {H}}\, L_{{\mathrm {F}}}\), when non-zero, has a non-zero projective-injective summand.

  3. (iii)

    We have \({\mathrm {F}}^*L_{{\mathrm {F}}}=I_{{\mathrm {G}}}\).

  4. (iv)

    The object \({\mathrm {H}}\, L_{{\mathrm {F}}}\) is both projective and injective.

  5. (v)

    The object \({\mathrm {H}}\, L_{{\mathrm {F}}}\) is indecomposable or zero.

Proof

By adjunction, \(L_{{\mathrm {G}}}\) injects into \({\mathrm {F}}^*L_{{\mathrm {F}}}\). Consider an injective object I and let \(L_{{\mathrm {K}}}\) be a simple quotient of I, where \({\mathrm {K}}\in {\mathcal {L}}\). Then \(L_{{\mathrm {G}}}\) is a subquotient of the injective object \({\mathrm {K}}^*\, I\). As \({\mathcal {J}}\) is strongly regular, it follows from Proposition 26(i) that \({\mathrm {G}}\) annihilates all simples except for \(L_{{\mathrm {G}}}\). Hence \(L_{{\mathrm {G}}}\) appears in the top of the injective object \({\mathrm {G}}{\mathrm {K}}^*\, I\). Applying \({\mathrm {F}}\), we obtain that \(P_{{\mathrm {F}}}\) is a quotient (and hence a direct summand) of the injective object \({\mathrm {F}}{\mathrm {G}}{\mathrm {K}}^*\, I\) and is therefore injective. This proves claim (i).

Assume that \({\mathrm {H}}\, L_{{\mathrm {F}}}\ne 0\). The argument in the previous paragraph shows that \({\mathrm {H}}'\, L_{{\mathrm {F}}}\) has a non-zero projective-injective summand for some \({\mathrm {H}}'\) in the same left cell as \({\mathrm {H}}\). Claim (ii) is now deduced by multiplying the latter on the left with elements in \({\mathcal {J}}\) and using strong regularity of \({\mathcal {J}}\).

Using adjunction and strong regularity of \({\mathcal {J}}\), we see that \({\mathrm {F}}^*L_{{\mathrm {F}}}\) has simple socle \(L_{{\mathrm {G}}}\). Therefore claim (iii) follows from claim (ii). Claim (iv) is implied by claim (iii) as any inequality \({\mathrm {H}}\, L_{{\mathrm {F}}}\ne 0\) means, by strong regularity of \({\mathcal {J}}\), that \({\mathrm {H}}\) and \({\mathrm {F}}^*\) are in the same left cell and hence \({\mathrm {H}}\, L_{{\mathrm {F}}}\) is a direct summand of the projective-injective object \({\mathrm {K}}{\mathrm {F}}^*L_{{\mathrm {F}}}\) for some \({\mathrm {K}}\).

It remains to prove claim (v). By strong regularity of \({\mathcal {J}}\), there is a unique element \(\tilde{{\mathrm {G}}}\) in the right cell of \({\mathrm {F}}\) such that \(\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\ne 0\). This implies that \(\tilde{{\mathrm {G}}}\, \hat{L}_{{\mathrm {F}}}\ne 0 \) and thus \(\tilde{{\mathrm {G}}}\, \hat{L}_{\tilde{{\mathrm {G}}}}\ne 0\) by Proposition 26(i), as \(\tilde{{\mathrm {G}}}\) and \({\mathrm {F}}\) are in the same right cell. In particular, by Proposition 28, \(\tilde{{\mathrm {G}}}\) is the Duflo involution in its left cell.

Using claim (iv) and strong regularity of \({\mathcal {J}}\), we deduce \(\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\cong k P_{{\mathrm {F}}}\) for some non-negative integer k. We compute \({\mathrm {F}}^*\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\) in two different ways. On the one hand,

$$\begin{aligned} {\mathrm {F}}^*\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\cong k{\mathrm {F}}^*\,P_{{\mathrm {F}}}\cong k{\mathrm {F}}^*{\mathrm {F}}\,L_{{\mathrm {F}}}\cong k{\mathbf{m}}_{{\mathrm {F}}}P_{{\mathrm {G}}^*}, \end{aligned}$$

where the last isomorphism follows from the isomorphism \({\mathrm {F}}^*{\mathrm {F}}\cong ({}^*{\mathrm {F}}{\mathrm {F}})^*\) and the fact that \(\{{\mathrm {G}}^*\}={\mathcal {L}}\cap {\mathcal {L}}^*\). On the other hand, \({\mathrm {F}}^*\) is in the same left cell as \(\tilde{{\mathrm {G}}}^*\) and hence in the same left cell as \(\tilde{{\mathrm {G}}}\) as the latter is the Duflo involution. Therefore, Lemma 29 and claim (iii) give

$$\begin{aligned} {\mathrm {F}}^*\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\cong {\mathbf{m}}_{\tilde{{\mathrm {G}}}}P_{{\mathrm {G}}^*}. \end{aligned}$$

From Proposition 1, we obtain \({\mathbf{m}}_{\tilde{{\mathrm {G}}}}={\mathbf{m}}_{{\mathrm {F}}}\) which yields \(k=1\) and proves claim (v) in the case \({\mathrm {H}}=\tilde{{\mathrm {G}}}\).

Now, in the general case, assume \({\mathrm {H}}\, L_{{\mathrm {F}}}\cong k P_{{\mathrm {K}}}\) for some \({\mathrm {K}}\in {\mathcal {L}}\) and a positive integer k (note that \({\mathrm {K}}\) and \({\mathrm {H}}\) are then in the same right cell). Then \({}^*{\mathrm {H}}{\mathrm {H}}\, L_{{\mathrm {F}}}\ne 0\) by adjunction and hence \({}^*{\mathrm {H}}{\mathrm {H}}\cong {\mathbf{m}}_{{\mathrm {H}}}\tilde{{\mathrm {G}}}\). Let us now compute the dimension of \({\mathrm {End}}({\mathrm {H}}\, L_{{\mathrm {F}}})\). On the one hand, by adjunction and the fact that \(\tilde{{\mathrm {G}}}\, L_{{\mathrm {F}}}\cong P_{{\mathrm {F}}}\), proved in the previous paragraph, this dimension equals \({\mathbf{m}}_{{\mathrm {H}}}\). On the other hand, it equals \(k^2\dim {\mathrm {End}}(P_{{\mathrm {K}}})\) which, in turn, by adjunction, equals \(k^2{\mathbf{m}}_{{\mathrm {K}}}\). Proposition 1 implies \({\mathbf{m}}_{{\mathrm {K}}}={\mathbf{m}}_{{\mathrm {H}}}\) and hence \(k=1\), completing the proof. \(\square \)

Proposition 30 shows that indecomposable 1-morphisms in \({\mathcal {J}}\) act, under \({\mathbf{C}}_{{\mathcal {L}}}\), as indecomposable projective functors for some self-injective algebra. In analogy to [17, Theorem 43], this implies the following.

Theorem 31

Let \({\mathscr {C}}\) be a weakly fiat 2-category and \({\mathcal {J}}\) a strongly regular two-sided cell in \({\mathscr {C}}\).

  1. (i)

    For any left cell \({\mathcal {L}}\) in \({\mathcal {J}}\), the cell 2-representation \({\mathbf{C}}_{{\mathcal {L}}}\) is strongly simple in the sense of [17, Section 6.2].

  2. (ii)

    If \({\mathcal {L}}\) and \({\mathcal {L}}'\) are two right cells in \({\mathcal {J}}\), then the cell 2-representations \({\mathbf{C}}_{{\mathcal {L}}}\) and \({\mathbf{C}}_{{\mathcal {L}}'}\) are equivalent.

Using this, and following the arguments in [19], we can generalize [19, Theorem 13] to all weakly fiat 2-categories (in the notation of Sect. 5).

Theorem 32

Let \({\mathscr {C}}={\mathscr {C}}_{{\mathcal {J}}}\) be a skeletal weakly fiat \({\mathcal {J}}\)-simple 2-category for a strongly regular \({\mathcal {J}}\). Then \({\mathscr {C}}\) is biequivalent to \({\mathscr {C}}_{A,X}\) for appropriate self-injective A and \(X\subset Z(A)\).

Similarly, we obtain the following generalization of [21, Theorem 8].

Theorem 33

Let \({\mathscr {C}}\) be a weakly fiat 2-category such that all two-sided cells in \({\mathscr {C}}\) are strongly regular. Then any simple transitive 2-representation of \({\mathscr {C}}\) is equivalent to a cell 2-representation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazorchuk, V., Miemietz, V. Isotypic faithful 2-representations of \({\mathcal {J}}\)-simple fiat 2-categories. Math. Z. 282, 411–434 (2016). https://doi.org/10.1007/s00209-015-1546-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1546-0

Keywords

Navigation