Skip to main content
Log in

A Diophantine duality applied to the KAM and Nekhoroshev theorems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we use geometry of numbers to relate two dual Diophantine problems. This allows us to focus on simultaneous approximations rather than small linear forms. As a consequence, we develop a new approach to the perturbation theory for quasi-periodic solutions dealing only with periodic approximations and avoiding classical small divisors estimates. We obtain two results of stability, in the spirit of the KAM and Nekhoroshev theorems, in the model case of a perturbation of a constant vector field on the \(n\)-dimensional torus. Our first result, which is a Nekhoroshev type theorem, is the construction of a “partial” normal form, that is a normal form with a small remainder whose size depends on the Diophantine properties of the vector. Then, assuming our vector satisfies the Bruno–Rüssmann condition, we construct an “inverted” normal form, recovering the classical KAM theorem of Kolmogorov, Arnold and Moser for constant vector fields on torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnol’d, V.I.: Small denominators. I. Mapping the circle onto itself. Izv. Akad. Nauk SSSR Ser. Mat. 25, 21–86 (1961)

    MathSciNet  Google Scholar 

  2. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in \({\bf R}^n\). II. Application of \(K\)-convexity. Discrete Comput. Geom. 16(3), 305–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bugeaud, Y., Laurent, M.: On exponents of homogeneous and inhomogeneous Diophantine approximation. Mosc. Math. J. 5(4), 747–766 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bounemoura, A., Niederman, L.: Generic Nekhoroshev theory without small divisors. Ann. Inst. Fourier 62(1), 277–324 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Algèbre, 3rd ed. ch. II, Hermann (1962)

  6. Bounemoura, A.: Optimal stability and instability for near-linear hamiltonians. Ann. Henri Poincaré 13(4), 857–868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cassels, J.W.S.: An Introduction to Diophantine Approximation. Cambridge Tracts in Mathematics and Mathematical Physics No. 45, Cambridge University Press, Cambridge (1957)

  8. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Grundlehren der Mathematischen Wissenschaften, No. 99. Springer, Berlin (1959)

  9. Davenport, H., Schmidt, W.M.: Approximation to real numbers by quadratic irrationals. Acta Arith. 13, 169–176 (1967)

    MathSciNet  MATH  Google Scholar 

  10. Davenport, H., Schmidt, W.M.: Approximation to real numbers by algebraic integers. Acta Arith. 15, 393–416 (1969)

    MathSciNet  MATH  Google Scholar 

  11. Fassò, F.: Lie series method for vector fields and Hamiltonian perturbation theory. Z. Angew. Math. Phys. 41(6), 843–864 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gruber, P.M., Lekkerkerker, C.G.: Geometry of Numbers, vol. 37, 2nd edn. Elsevier Science Publishers, Amsterdam (1987)

  13. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 3rd edn. Oxford University Press, Oxford (1954)

    MATH  Google Scholar 

  14. Khanin, K., Lopes, D., Marklof, J.: Renormalization of multidimensional Hamiltonian flows. Nonlinearity 19(12), 2727–2753 (2006)

    Google Scholar 

  15. Khanin, K., Lopes, D.: Multidimensional continued fractions, dynamical renormalization and KAM theory. Commun. Math. Phys. 270(1), 197–231 (2007)

    Google Scholar 

  16. Kolmogorov, A.N.: On dynamical systems with an integral invariant on the torus. Doklady Akad. Nauk SSSR (N.S.) 93, 763–766 (1953)

    MathSciNet  MATH  Google Scholar 

  17. Kolmogorov, A.N.: On the preservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk. SSSR 98, 527–530 (1954)

    MathSciNet  MATH  Google Scholar 

  18. Lekkerkerker, C.G.: Geometry of Numbers, 1st edn. Bibliotheca Mathematica, No. VIII, North Holland (1969)

  19. Lochak, P.: Canonical perturbation theory via simultaneous approximation Russ. Math. Surv. 47(6), 57–133 (1992)

    Article  MathSciNet  Google Scholar 

  20. Mahler, K.: Ein übertragungsprinzip für konvexe Körper. Časopis Mat. Fysik. 68, 93–102 (1939)

    MathSciNet  MATH  Google Scholar 

  21. Mahler, K.: On compound convex bodies I. Proc. Lond. Math. Soc. 5, 358–379 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moser, J.: A rapidly convergent iteration method and non-linear differential equations. II. Ann. Scuola Norm. Sup. Pisa (3) 20, 499–535 (1966)

    MathSciNet  Google Scholar 

  23. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  24. Niederman, L.: Prevalence of exponential stability among nearly integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 27(3), 905–928 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pöschel, J.: KAM à la R. Regul. Chaotic Dyn. 16(1–2), 17–23 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Riesz, M.: Modules Réciproques. C. R. Congr. Int. Math., Oslo 1936, vol. 2, pp. 36–37 (1937)

  27. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6(2), 119–204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rüssmann, H.: KAM-iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete Contin. Dyn. Syst. Ser. S 3(4), 683–718 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmidt, W.: Diophantine Approximation. In: Lecture Notes in Mathemetics, No. 785. Springer, Berlin (1980)

  30. Waldschmidt, M.: Topologie des points rationnels, Cours de Troisième Cycle 1994/95, Preprint Univ. P. et M. Curie, Paris, 175 p.; available at http://www.math.jussieu.fr/~miw/texts.html

  31. Yoccoz, J.-C.: Analytic linearization of circle diffeomorphisms, Dynamical systems and small divisors (Cetraro, 1998), Lecture Notes in Math., vol. 1784, Springer, Berlin, pp. 125–173 (2002)

Download references

Acknowledgments

We would like to thank deeply L. Niederman for bringing us to work together. The first author thanks P. Lochak and H. Eliasson for useful discussions on KAM theory, and is supported by a NSF grant DMS-0635607. The second author thanks M. Laurent and D. Roy, and is supported by Agence Nationale de la Recherche (Project HAMOT, ref. ANR 2010 BLAN-0115-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abed Bounemoura.

Appendices

Appendix A: Bruno–Rüssmann condition

Recall that the set of Bruno–Rüssmann vectors \(\mathcal B _d\) was defined in Sect. 2.2, and in Sect. 3 we introduced another condition (A). The aim of this short appendix is to prove the following proposition.

Lemma 4.1

A vector \(\alpha \) satisfies condition (A) if and only if it belongs to \(\mathcal B _d\).

In the proof, we shall make use of integration by parts and change of variables formulas for Stieltjes integral.

Proof

First let us prove that there exists a continuous, non-decreasing and unbounded function \(\Phi : [1,+\infty ) \rightarrow [1,+\infty )\) such that

$$\begin{aligned} \Psi _\alpha (Q) \le \Phi (Q) \le \Psi _\alpha (Q+1), \quad Q\ge 1. \end{aligned}$$
(4.1)

Recall from Proposition 2.2 that \(\Psi _\alpha =\Psi _d\) is left-continuous and constant on each interval \((Q_l,Q_{l+1}]\), \(l\in \mathbb{N }^*\) and on \([1,Q_1]\) with \(Q_1 \ge 1\). For any \(l\in \mathbb{N }^*\), let us choose a point \(b_l\in (Q_l,Q_{l+1}) \cap [Q_{l+1}-1,Q_{l+1})\) and define

$$\begin{aligned} \Phi _l(Q)\!=\! {\left\{ \begin{array}{ll} \Psi _\alpha (Q_{l+1}), \quad Q\in (Q_l,b_l],\\ \Psi _\alpha (Q_{l+1})+(Q\!-\!b_l)(Q_{l+1}\!-\!b_l)^{-1} \left( \Psi _\alpha (Q_{l+2})\!-\!\Psi _\alpha (Q_{l+1})\right) , \quad Q\!\in \! (b_l,Q_{l+1}]. \end{array}\right. } \end{aligned}$$

If \(Q_1>1\), we choose a point \(b_0\in [1,Q_{1}) \cap [Q_{1}-1,Q_{1})\) and define \(\Phi _0\) on \([1,Q_1]\) similarly, otherwise if \(Q_1=1\) we simply define \(\Phi _0(1)=\Psi _{\alpha }(1)\), so that finally the function \(\Phi \) defined by

$$\begin{aligned} \Phi =\Phi _0 \mathbf 1 _{[1,Q_{1}]}+\sum _{l\in \mathbb{N }^*}\Phi _l \mathbf 1 _{(Q_l,Q_{l+1}]} \end{aligned}$$

has all the wanted properties. The existence of such a function \(\Phi \) shows that in Corollary 2.5, the integral condition may be written equivalently in terms of \(\Psi _{\alpha }\), or also in terms of this function \(\Phi \).

Now let \(\Delta _\Phi (Q)=Q\Phi (Q)\) and \(\Delta _\Phi ^{-1}\) denotes the functional inverse of \(\Delta _\Phi \). From (4.1), we deduce the following inequalities:

$$\begin{aligned} \Delta _\alpha (Q) \le \Delta _\Phi (Q) \le \Delta _\alpha (Q+1), \quad Q\ge 1. \end{aligned}$$
$$\begin{aligned} \Delta ^*_\alpha (x)-1 \le \Delta ^{-1}_\Phi (x) \le \Delta ^*_\alpha (x), \quad x\ge \Delta _{\alpha }(1). \end{aligned}$$
$$\begin{aligned} \frac{1}{\Delta ^*_\alpha (x)} \le \frac{1}{\Delta ^{-1}_\Phi (x)} \le \frac{1}{\Delta ^*_\alpha (x)-1}, \quad x> \Delta _{\alpha }(1). \end{aligned}$$
(4.2)

From (4.2) it follows that \(\alpha \) satisfies condition (A) if and only if

$$\begin{aligned} \int \limits _{\Delta _{\Phi }(1)}^{+\infty } \frac{dx}{x\Delta _{\Phi }^{-1}(x)}<\infty . \end{aligned}$$
(4.3)

By a change of variables, letting \(Q=\Delta _{\Phi }^{-1}(x)\), (4.3) is equivalent to

$$\begin{aligned} \int \limits _{1}^{+\infty }\frac{d\Delta _{\Phi }(Q)}{Q\Delta _{\Phi }(Q)}<\infty . \end{aligned}$$
(4.4)

Now for \(t=\Delta _{\Phi }^{-1}(1)\) and \(T>t\), an integration by parts gives

$$\begin{aligned} T^{-1}\ln \Delta _{\Phi }(T)+\int \limits _{t}^{T}Q^{-2} \ln (\Delta _{\Phi }(Q))dQ=\int \limits _{t}^T \frac{d\Delta _{\Phi }(Q)}{Q\Delta _{\Phi }(Q)} \end{aligned}$$
(4.5)

and as \(T^{-1}\ln \Delta _{\Phi }(T)>0\), letting \(T\) goes to infinity in (4.5), condition (4.4) implies

$$\begin{aligned} \int _{1}^{+\infty }Q^{-2}\ln (\Delta _{\Phi }(Q))dQ<\infty . \end{aligned}$$
(4.6)

Now, using the fact that \(\Delta _{\Phi }\) is increasing and assuming that (4.6) holds true, we also have

$$\begin{aligned} T^{-1}\ln \Delta _{\Phi }(T)=\int _{T}^{+\infty }Q^{-2} \ln (\Delta _{\Phi }(T))dQ \le \int _{T}^{+\infty }Q^{-2} \ln (\Delta _{\Phi }(Q))dQ \end{aligned}$$

and therefore letting \(T\) goes to infinity in (4.5), condition (4.6) implies condition (4.4). So (4.4) and (4.6) are in fact equivalent. Since \(\ln \Delta _{\Phi }(Q)=\ln Q+\ln \Phi (Q)\), (4.6) is clearly equivalent to

$$\begin{aligned} \int _{1}^{+\infty }Q^{-2}\ln (\Phi (Q))dQ<\infty . \end{aligned}$$
(4.7)

Hence conditions (A), (4.3), (4.4), (4.6), (4.7) and \(\alpha \in \mathcal B _d\) are all equivalent, and this ends the proof. \(\square \)

Appendix B: Technical estimates

In this second appendix, we derive technical estimates concerning the Lie series method for vector fields. These are well-known (see [11] for instance, where this formalism was first used as far as we aware of), but for completeness we prove the estimates adapted to our need.

Lemma 5.1

Let \(V\) be a bounded real-analytic vector field on \(\mathbb{T }^n_s\), \(0<\varsigma <s\) and \(\tau =\varsigma |V|_{s}^{-1}\). For \(t\in \mathbb{C }\) such that \(|t|< \tau \), the map \(V^t : \mathbb{T }^n_{s-\varsigma } \rightarrow \mathbb{T }^n_s\) is a well-defined real-analytic embedding, and we have

$$\begin{aligned} |V^t-\mathrm{Id }|_{s-\varsigma }\le |V|_s, \quad |t|<\tau . \end{aligned}$$

Moreover, \(V^t\) depends analytically on \(t\), for \(|t|<\tau \).

Proof

This is a direct consequence of the existence theorem for analytic differential equations and the analytic dependence on the initial condition: on the domain \(\mathbb{T }^n_{s-\varsigma }\), for \(|t|<\tau \), \(V^t\) is well-defined, depends analytically on \(t\) and satisfies the equality

$$\begin{aligned} V^t=\mathrm{Id }+\int _{0}^{t}V\circ V^u du. \end{aligned}$$

The statement follows. \(\square \)

Lemma 5.2

Let \(X\) and \(V\) be two bounded real-analytic vector fields on \(\mathbb{T }^n_s\), and \(0<\varsigma <s\). Then

$$\begin{aligned} |[X,V]|_{s-\varsigma }\le 2\varsigma ^{-1}|X|_s|V|_s. \end{aligned}$$

Proof

First consider a real-analytic function \(f\) defined on \(\mathbb{T }^n_s\), and let \(\mathcal L _V f\) the Lie derivative of \(f\) along \(V\), that is

$$\begin{aligned} \mathcal L _V f=\frac{d}{dt}(f\circ V^t)_{|t=0}=F^{\prime }(0), \quad F(t)=f\circ V^t. \end{aligned}$$

Now for \(|t|<\tau =\varsigma |V|_{s}^{-1}\), by Lemma 5.1, \(F(t)\) is a well-defined real-analytic function on \(\mathbb{T }^n_{s-\varsigma }\) and moreover the map \(F\) is analytic in \(t\), hence by the classical Cauchy estimate

$$\begin{aligned} |\mathcal L _V f|_{s-\varsigma }=|F^{\prime }(0)|\le \tau ^{-1}\sup _{|t|<\tau }|f\circ V^t|_{s-\varsigma }\le \tau ^{-1} |f|_s =\varsigma ^{-1} |V|_{s}|f|_s. \end{aligned}$$

Similarly, we have

$$\begin{aligned} |\mathcal L _X f|_{s-\varsigma } \le \varsigma ^{-1} |X|_{s}|f|_s. \end{aligned}$$

Now, for \(1\le i \le n\), if \(X^i\) and \(V^i\) are the components of \(X\) and \(V\), then \(\mathcal L _X V_i-\mathcal L _V X_i\) are the components of \([X,V]\), so each component of \([X,V]\) is bounded, on the domain \(\mathbb{T }^n_{s-\varsigma }\), by \(2\varsigma ^{-1}|X|_s|V|_s\) and therefore

$$\begin{aligned} |[X,V]|_{s-\varsigma }\le 2\varsigma ^{-1}|X|_s|V|_s \end{aligned}$$

which is the desired estimate. \(\square \)

Lemma 5.3

Let \(X\) and \(V\) be two bounded real-analytic vector fields on \(\mathbb{T }^n_s\), and \(0<\varsigma <s\). Assume that \(|V|_s \le (4e)^{-1}\varsigma \). Then for all \(|t|\le 1\),

$$\begin{aligned} |\big (V^t\big )^*X|_{s-\varsigma }\le 2|X|_s. \end{aligned}$$

Proof

From the general identity

$$\begin{aligned} \frac{d}{dt}\big (V^t\big )^*X=\big (V^t\big )^*[X,V] \end{aligned}$$

we have the formal Lie series expansion

$$\begin{aligned} \big (V^t\big )^*X=\sum _{n\in \mathbb{N }}(n!)^{-1}X_nt^n, \quad X_0=X, \quad X_{n}=[X_{n-1},V], \; n\ge 1. \end{aligned}$$

Let \(s_i=s-in^{-1}\varsigma \) for \(1\le i \le n\), so that \(s_0=s\) and \(s_n=s-\varsigma \). Using Lemma 5.2, we have

$$\begin{aligned} |X_n|_{s-\varsigma }=|X_n|_{s_n}=|[X_{n-1},V]|_{s_n}\le 2n\varsigma ^{-1}|X_{n-1}|_{s_{n-1}}|V|_{s_{n-1}} \end{aligned}$$

and by induction

$$\begin{aligned} |X_n|_{s-\varsigma }\le (2n\varsigma ^{-1})^n|X_0|_{s_0}|V|_{s_0}^n= (2n\varsigma ^{-1})^n|X|_{s}|V|_{s}^n. \end{aligned}$$

By assumption, \(|V|_s \le (4e)^{-1}\varsigma \) so

$$\begin{aligned} |X_n|_{s-\varsigma }\le (2e)^{-n}n^n |X|_s \end{aligned}$$

and therefore

$$\begin{aligned} |\big (V^t\big )^*X|_{s-\varsigma }\le |X|_s \sum _{n\ge 0}(n!)^{-1}(2e)^{-n}(n|t|)^n. \end{aligned}$$

Now for any \(n\in \mathbb{N }^*\), \(n!\ge n^ne^{-n}\), hence \((n!)^{-1}(2e)^{-n}(n|t|)^n \le (2^{-1}|t|)^n\) and since \(|t|\le 1\), the above series is bounded by \(2\). This proves the lemma. \(\square \)

The above estimate can be easily improved, but for \(t\ne 0\), the constant \(2\) cannot be replaced by \(1\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bounemoura, A., Fischler, S. A Diophantine duality applied to the KAM and Nekhoroshev theorems. Math. Z. 275, 1135–1167 (2013). https://doi.org/10.1007/s00209-013-1174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1174-5

Keywords

Navigation