Skip to main content
Log in

Lifespan theorem for constrained surface diffusion flows

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider closed immersed hypersurfaces in \({\mathbb R^{3}}\) and \({\mathbb R^4}\) evolving by a class of constrained surface diffusion flows. Our result, similar to earlier results for the Willmore flow, gives both a positive lower bound on the time for which a smooth solution exists, and a small upper bound on a power of the total curvature during this time. By phrasing the theorem in terms of the concentration of curvature in the initial surface, our result holds for very general initial data and has applications to further development in asymptotic analysis for these flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser, H.J., Triebel, H. (eds.) Function Spaces, Differential Operators and Nonlinear Analysis, pp. 9–126. Teubner, Stuttgart, Leipzig (1993)

  2. Baras P., Duchon J., Robert R.: Evolution d’une interface par diffusion de surface. Comm. Partial Differ. Equ. 9(4), 313–335 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burago Y., Zalgaller V.: Geometric Inequalities. Springer, New York (1988)

    MATH  Google Scholar 

  4. Cahn J., Elliott C., Novick-Cohen A.: The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. Eur. J. Appl. Math. 7(3), 287–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahn J., Taylor J.: Surface motion by surface diffusion. Acta Metall. Mater. 42(4), 1045–1063 (1994)

    Article  Google Scholar 

  6. Chruściel P.: Semi-global existence and convergence of solutions of the Robinson-Trautman (2-dimensional Calabi) equation. Commun. Math. Phys. 137(2), 289–313 (1991)

    Article  MATH  Google Scholar 

  7. Davì F., Gurtin M.: On the motion of a phase interface by surface diffusion. Z. Angew. Math. Phys. 41(6), 782–811 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eidelman S., Zhitarashu N.: Parabolic Boundary Value Problems. Birkhäuser, Basel (1998)

    Book  MATH  Google Scholar 

  9. Elliott C., Garcke H.: Existence results for diffusive surface motion laws. Adv. Math. Sci. Appl. 7(1), 465–488 (1997)

    MathSciNet  Google Scholar 

  10. Escher J., Mayer U., Simonett G.: The surface diffusion flow for immersed hypersurfaces. SIAM J. Math. Anal. 29(6), 1419–1433 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fife P.: Models for phase separation and their mathematics. Elec. J. Differ. Equ. 2000(48), 1–26 (2000)

    MathSciNet  Google Scholar 

  12. Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  13. Hamilton R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Huisken G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20(1), 237–266 (1984)

    MathSciNet  MATH  Google Scholar 

  15. Huisken G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 1987(382), 35–48 (1987)

    Article  MathSciNet  Google Scholar 

  16. Huisken, G., Polden, A.: Geometric evolution equations for hypersurfaces. Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Springer, Berlin pp. 45–84 (1999)

  17. Ito K.: The surface diffusion flow equation does not preserve the convexity. RIMS Kôkyûroku Bessatsu 1105, 10–21 (1999)

    MATH  Google Scholar 

  18. Kuwert, E.: Private communication (2008)

  19. Kuwert E., Schatzle R.: The Willmore flow with small initial energy. J. Differ. Geom. 57(3), 409–441 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Kuwert E., Schatzle R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(2), 307–339 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type. Transl. Math. Monogr. (1968)

  22. Li, S.: Quasilinear evolution problems. Ph.D. thesis, T.U. Delft (1992)

  23. Liu Z.: Lifespan of a smooth solution for the surface diffusion flow. Chin. Ann. Math. Ser. B 24(3), 331–342 (2003)

    Article  Google Scholar 

  24. Mantegazza C.: Smooth geometric evolutions of hypersurfaces. Geom. Funct. Anal. 12(1), 138–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mayer U.: Numerical solutions for the surface diffusion flow in three space dimensions. J. Comput. Appl. Math. 20(3), 361–379 (2001)

    MATH  Google Scholar 

  26. McCoy J.: The surface area preserving mean curvature flow. Asian J. Math. 7(1), 7–30 (2003)

    MathSciNet  MATH  Google Scholar 

  27. McCoy J.: The mixed volume preserving mean curvature flow. Math. Z. 246(1–2), 155–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. McCoy J.: Mixed volume preserving curvature flows. Calc. Var. Partial Differ. Equ. 24(2), 131–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Michael J., Simon L.: Sobolev and mean-value inequalities on generalized submanifolds of R n. Commun. Pure Appl. Math 26(36), 1–379 (1973)

    MathSciNet  Google Scholar 

  30. Mullins W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  31. Polden, A.: Curves and surfaces of total curvature and fourth order flows. Ph.D. thesis, Mathematisches Institut, University of Tubingen (1996)

  32. Sharples J.J.: Linear and quasilinear parabolic equations in Sobolev space. J. Differ. Equa. 202(1), 111–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sharples, J.J.: Private communication (2008)

  34. Simon L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom 1(2), 281–326 (1993)

    MATH  Google Scholar 

  35. Simonett G.: The Willmore flow for near spheres. Differ. Integr. Equa. 14(8), 1005–1014 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Solonnikov, V.: On the boundary value problems for linear parabolic systems of differential equations of general form. In: Proceedings of Steklov Institute of Mathematics, vol. 83, pp. 1–162 (1965)

  37. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Topping P.: Relating diameter and mean curvature for submanifolds of Euclidean space. Comment. Math. Helv. 83(3), 539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wheeler, G.: Fourth order geometric evolution equations. Ph.D. thesis, University of Wollongong (February, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCoy, J., Wheeler, G. & Williams, G. Lifespan theorem for constrained surface diffusion flows. Math. Z. 269, 147–178 (2011). https://doi.org/10.1007/s00209-010-0720-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-010-0720-7

Keywords

Mathematics Subject Classification (2000)

Navigation