Skip to main content
Log in

A \(\mathbb{Z}_{2}\)-orbifold model of the symplectic fermionic vertex operator superalgebra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give an example of an irrational C 2-cofinite vertex operator algebra whose central charge is −2d for any positive integer d. This vertex operator algebra is given as the even part of the vertex operator superalgebra generated by d pairs of symplectic fermions, and it is just the realization of the c = −2-triplet algebra given by Kausch in the case d = 1. We also classify irreducible modules for this vertex operator algebra and determine its automorphism group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe T. (2005) Rationality of the vertex operator algebra V + L for a positive definite even lattice L. Math. Z. 249(2): 455–484

    Article  MathSciNet  Google Scholar 

  2. Abe T., Buhl G., Dong C. (2004) Rationality, regularity, and C 2-cofiniteness. Trans. Am. Math. Soc. 356(8): 3391–3402

    Article  MathSciNet  Google Scholar 

  3. Abe T., Dong C. (2004) Classification of irreducible modules for the vertex operator algebra V + L ; general case. J. Algebra 273(2): 657–685

    Article  MathSciNet  Google Scholar 

  4. Buhl G. (2002) A spanning set for VOA modules. J. Algebra 254, 125–151

    Article  MathSciNet  Google Scholar 

  5. Carqueville N., Flohr M. (2006) Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of \(\mathcal{W}\)-algebras. J. Phys. A 39(4): 951–966

    Article  MathSciNet  Google Scholar 

  6. Dong C., Nagatomo K. (1999), Classification of irreducible modules for the vertex operator algebra M(1)+. J. Algebra 216: 384–404

    Article  MathSciNet  Google Scholar 

  7. Dong C., Nagatomo K. (1999) Representations of vertex operator algebra V + L for rank one lattice L. Commun. Math. Phys. 202, 169–195

    Article  MathSciNet  Google Scholar 

  8. Dong C., Nagatomo K. (2001) Classification of irreducible modules for the vertex operator algebra M(1)+ II. Higher Rank. J. Algebra 240, 389–325

    MathSciNet  Google Scholar 

  9. Dong C., Lin Z. (1996) Induced modules for vertex operator algebras. Commun. Math. Phys. 179(1): 157–183

    Article  MathSciNet  Google Scholar 

  10. Dong C., Mason G. (1997) On quantum Galois theory. Duke Math. J. 86(2): 305–321

    Article  MathSciNet  Google Scholar 

  11. Frenkel I., Huang Y.-Z., Lepowsky J. On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, (1993)

  12. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Pure and Applied Mathematics, 134, Academic Boston (1988)

  13. Gaberdiel, M., Kausch, H.: A rational logarithmic conformal field theory. Phys. Lett. B 386 (1–4), 131–137 (1996)

    Google Scholar 

  14. Gaberdiel M., Neitzke A. (2003) Rationality, quasirationality and finite W-algebras. Commun. Math. Phys. 238(1–2): 305–331

    MathSciNet  Google Scholar 

  15. Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. math.QA/0406291v1

  16. Kac V. Vertex Algebras for Beginners, 2nd edn, University Lecture Series, vol. 10. American Mathematical Society, Providence, (1998)

  17. Kausch, H.: Curiosities at c = −2, hep-th/9510149

  18. Li H.-S. (1994) Symmetric invariant bilinear forms on vertex operator algebras. J. Pure. Appl. Algebra 96(3): 279–297

    Article  MathSciNet  Google Scholar 

  19. Li H.-S. (1996) Local systems of vertex operators, vertex superalgebras and modules. J. Pure. Appl. Algebra 109, 143–195

    Article  MathSciNet  Google Scholar 

  20. Li H.-S. (1999) Some finiteness properties of regular vertex operator algebras. J. Algebra 212, 495–514

    Article  MathSciNet  Google Scholar 

  21. Li H.-S., Lepowsky J. (2004) Introduction to vertex operator algebras and their representations. Prog Math., Birkhäuser

    MATH  Google Scholar 

  22. Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields. MSJ Memoirs, vol. 4. Mathematical Society of Japan (1999)

  23. Miyamoto M. (2004) Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122(1): 51–91

    Article  MathSciNet  Google Scholar 

  24. Nagatomo K., Tsuchiya A. (2005) Conformal field theories associated to regular chiral vertex operator algebras I: theories over the projective line. Duke Math. J. 128(3): 393–471

    Article  MathSciNet  Google Scholar 

  25. Wakimoto, M.: Infinite-dimensional Lie algebras, Translated from the 1999 Japanese original by Kenji Iohara. Translations of Mathematical Monographs, 195. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence (2001)

  26. Xu X. Introduction to vertex operator superalgebras and their modules. Mathematics and its Applications. Kluwer (1998)

  27. Zhu Y.-C. (1996) Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9: 237–302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Abe.

Additional information

This research is supported in part by a grant from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, T. A \(\mathbb{Z}_{2}\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007). https://doi.org/10.1007/s00209-006-0048-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-006-0048-5

Keywords

Navigation