Skip to main content
Log in

Sign of the pulsating wave speed for the bistable competition–diffusion system in a periodic habitat

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

This paper is concerned with the speeds of pulsating waves for two-species competition–diffusion systems with bistable structures in periodically varying media. The existence and qualitative properties of pulsating waves have been established recently. In this work, assuming that the two species share the same diffusion rates, we study the sign of wave speeds by comparing the reactions and competitions. We first give a criterion when the speed is zero, and then provide some sufficient conditions ensuring the speed has a strict sign. We also show that the spatial heterogeneity has a significant consequence on the sign and gives rise to some new phenomena. More precisely, the pulsating waves in two opposite directions may have different speeds. Particularly, from the ecological point of view, our result indicates that the invasion of a new species may succeed in one direction but fail in the opposite one. Finally, we show the presence of multiple stationary waves which is in contrast with the uniqueness of non-stationary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arapostathis, A., Ghosh, M.K., Marcus, S.I.: Harnack’s inequality for cooperative weakly coupled elliptic systems. Commun. Partial Differ. Equ. 24, 1555–1571 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, X., Wang, Z.-C.: Existence and stability of time periodic traveling waves for a periodic bistable Lotka–Volterra competition system. J. Differ. Equ. 255, 2402–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model I: species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Liang, X., Tsai, J.C.: Pulsating waves in a dissipative medium with Delta sources on a periodic lattice. J. Math. Pures Appl. 150, 24–63 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z.-Q., Zhao, Z.: Harnack principle for weakly coupled elliptic systems. J. Differ. Equ. 139, 261–282 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conley, C., Gardner, R.: An application of the generalized Morse index to traveling wave solutions of a competitive reaction diffusion model. Indiana Univ. Math. J. 33, 319–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, W., Giletti, T.: Admissible speeds in spatially periodic bistable reaction–diffusion equations. Adv. Math. 398, 107889 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, W., Hamel, F., Zhao, X.-Q.: Propagation phenomena for periodic bistable reaction–diffusion equations. Calc. Var. Partial. Differ. Equ. 54, 2517–2551 (2015)

    Article  MATH  Google Scholar 

  11. Ding, W., Hamel, F., Zhao, X.-Q.: Bistable pulsating fronts for reaction–diffusion equations in a periodic habitat. Indiana Univ. Math. J. 66, 1189–1265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, W., Huang, R., Yu, X.: Bistable pulsating wave of a competition model in rapidly varying media and its homogenization limit (preprint)

  13. Du, L.-J., Li, W.-T., Wang, J.-B.: Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition–diffusion system. J. Differ. Equ. 265, 6210–6250 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, L.-J., Li, W.-T., Wu, S.-L.: Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat. Z. Angew. Math. Phys. 71, 11 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ducrot, A.: A multi-dimensional bistable nonlinear diffusion equation in a periodic medium. Math. Ann. 366, 783–818 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ducrot, A., Giletti, T., Matano, H.: Existence and convergence to a propagating terrace in one-dimensional reaction–diffusion equations. Trans. Am. Math. Soc. 366, 5541–5566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, J., Zhao, X.-Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, J., Yu, X., Zhao, X.-Q.: Traveling waves and spreading speeds for time-space periodic monotone systems. J. Funct. Anal. 272, 4222–4262 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furter, J., López-Gómez, J.: On the existence and uniqueness of coexistence states for the Lotka–Volterra competition model with diffusion and spatially dependent coefficients. Nonlinear Anal. 25, 363–398 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gardner, R.A.: Existence and stability of travelling wave solutions of competition models: a degree theoretic approach. J. Differ. Equ. 44, 343–364 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Girardin, L.: Competition in periodic media: I-Existence of pulsating fronts. Discret. Contin. Dyn. Syst. B 22, 1341–1360 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Girardin, L., Nadin, G.: Competition in periodic media: II-Segregative limit of pulsating fronts and “Unity is not Strength’’-type result. J. Differ. Equ. 265, 98–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, J.-S., Lin, Y.-C.: The sign of the wave speed for the Lotka–Volterra competition–diffusion system. Commun. Pure Appl. Anal. 12, 2083–2090 (2013)

  24. Guo, J.-S., Nakamura, K.-I., Ogiwara, T., C.-H., Wu, C, : The sign of traveling wave speed in bistable dynamics. Discret. Contin. Dyn. Syst. A 40, 3451–3466 (2020)

  25. Hess, P.: Periodic-Parabolic Boundary Value Problems and Positivity. Longman Scientific and Technical, Harlow (1991)

    MATH  Google Scholar 

  26. Kan-on, Y.: Parameter dependence of propagation speed of travelling waves for competition-diffusion equations. SIAM J. Math. Anal. 26, 340–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kan-on, Y., Fang, Q.: Stability of monotone travelling waves for competition–diffusion equations, Japan. J. Ind. Appl. Math. 13, 343–349 (1996)

    Article  MATH  Google Scholar 

  28. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, M., Huang, Z., Ou, C.: Speed of the traveling wave for the bistable Lotka–Volterra competition model. Nonlinearity 32, 3143–3162 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mora, X.: Semilinear parabolic problems define semiflows on \(C^k\) spaces. Trans. Am. Math. Soc. 278, 21–55 (1983)

    MATH  Google Scholar 

  32. Morita, Y., Tachibana, K.: An entire solution to the Lotka–Volterra competition–diffusion equations. SIAM J. Math. Anal. 40, 2217–2240 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  34. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41. American Mathematical Society, Providence (1995)

  35. Wang, H., Ou, C.: Propagation speed of the bistable traveling wave to the Lotka–Volterra competition system in a periodic habitat. J. Nonlinear Sci. 30, 3129–3159 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xin, J.X.: Existence and nonexistence of traveling waves and reaction–diffusion front propagation in periodic media. J. Stat. Phys. 73, 893–926 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xin, J.X.: Front propagation in heterogeneous media. SIAM Rev. 42, 161–230 (2000)

  38. Zhang, Y., Zhao, X.-Q.: Bistable travelling waves for a reaction and diffusion model with seasonal succession. Nonlinearity 26, 691–709 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, G.B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc. Var. Partial Differ. Equ. 59, 1–34 (2020)

Download references

Acknowledgements

The authors would like to thank the anonymous referees for careful reading and valuable comments. Weiwei Ding was partly supported by the National Natural Science Foundation of China (12001206) and the Basic and Applied Basic Research Foundation of Guangdong Province (2019A1515110506). Xing Liang was partially supported by the National Natural Science Foundation of China (11971454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Liang.

Additional information

Communicated by giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Liang, X. Sign of the pulsating wave speed for the bistable competition–diffusion system in a periodic habitat. Math. Ann. 385, 1–36 (2023). https://doi.org/10.1007/s00208-022-02372-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-022-02372-1