Skip to main content

Advertisement

Log in

Jump inequalities via real interpolation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Jump inequalities are the \(r=2\) endpoint of Lépingle’s inequality for r-variation of martingales. Extending earlier work by Pisier and Xu (Probab Theory Relat Fields 77(4):497–514, 1988) we interpret these inequalities in terms of Banach spaces which are real interpolation spaces. This interpretation is used to prove endpoint jump estimates for vector-valued martingales and doubly stochastic operators as well as to pass via sampling from \(\mathbb {R}^{d}\) to \(\mathbb {Z}^{d}\) for jump estimates for Fourier multipliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bufetov, A., Klimenko, A.: On Markov operators and ergodic theorems for group actions. Eur. J. Comb. 33(7), 1427–1443 (2012). https://doi.org/10.1016/j.ejc.2012.03.008. (ISSN: 0195-6698)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223, pp. x+207. Springer, Berlin (1976)

    Book  Google Scholar 

  3. Bourgain, J., et al.: On dimension-free variational inequalities for averaging operators in \(\mathbb{R}^{d}\). Geom. Funct. Anal. 28(1), 58–99 (2018). https://doi.org/10.1007/s00039-018-0433-3. (ISSN: 1016-443X arXiv:1708.04639 [math.FA])

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain., J.: “Pointwise ergodic theorems for arithmetic sets”. In: Inst. Hautes Études Sci. Publ. Math. 69 (1989). With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein, pp. 5–45. ISSN: 0073-8301. https://doi.org/10.1007/BF02698838. http://www.numdam.org/item?id=PMIHES_1989__69__5_0

    Article  MathSciNet  Google Scholar 

  5. Bufetov, A.I.: Convergence of spherical averages for actions of free groups. Ann. Math. (2) 155(3), 929–944 (2002). https://doi.org/10.2307/3062137. (ISSN: 0003-486X arXiv:math/0507243)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cwikel, M.: On \((L^{p_0}(A_{0}), L^{p_{1}}(A_{1}))_{\theta, q}\). Proc. Am. Math. Soc. 44, 286–292 (1974). (ISSN: 0002-9939)

    MATH  Google Scholar 

  7. Do, Y., Muscalu, C., Thiele, C.: Variational estimates for paraproducts. Rev. Mat. Iberoam. 28(3), 857–878 (2012). https://doi.org/10.4171/RMI/694. (ISSN: 0213-2230 arXiv:1009.5187 [math.CA])

    Article  MathSciNet  MATH  Google Scholar 

  8. Grafakos, L.: Classical Fourier analysis. Third., vol. 249. Graduate Texts in Mathematics, pp. xviii+638. Springer, New York (2014) https://doi.org/10.1007/978-1-4939-1194-3 (ISBN: 978-1-4939-1193-6; 978-1-4939-1194-3)

    MATH  Google Scholar 

  9. Hong, G., Ma, T.: Vector valued \(q\)-variation for differential operators and semigroups I. Math. Z. 286(1–2), 89–120 (2017). https://doi.org/10.1007/s00209-016-1756-0. (ISSN: 0025-5874 arXiv:1411.1251 [math.FA])

    Article  MathSciNet  MATH  Google Scholar 

  10. Jones, R.L., Reinhold, K.: Oscillation and variation inequalities for convolution powers. Ergod. Theory Dyn. Syst. 21(6), 1809–1829 (2001). https://doi.org/10.1017/S0143385701001869. (ISSN: 0143-3857)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, R.L., Seeger, A., Wright, J.: Strong variational and jump inequalities in harmonic analysis. Trans. Am. Math. Soc. 360(12), 6711–6742 (2008). https://doi.org/10.1090/S0002-9947-08-04538-8. (ISSN: 0002-9947)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kovač, V., Zorin-Kranich, P.: Variational estimates for martingale paraproducts. In: Electron. Commun. Probab. (2018). arXiv:1812.09763 [math.PR] (To appear)

  13. Lépingle, D.: La variation d’ordre \(p\) des semi-martingales. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36(4), 295–316 (1976)

    Article  MathSciNet  Google Scholar 

  14. Mirek, M., Stein, E.M., Trojan, B.: \(\ell ^p(\mathbb{Z}^d)\)-estimates for discrete operators of Radon type: variational estimates. Invent. Math. 209(3), 665–748 (2017). https://doi.org/10.1007/s00222-017-0718-4. (ISSN: 0020-9910arXiv:1512.07523 [math.CA])

    Article  MathSciNet  MATH  Google Scholar 

  15. Magyar, A., Stein, E.M., Wainger, S.: Discrete analogues in harmonic analysis: spherical averages. Ann. Math. (2) 155(1), 189–208 (2002). https://doi.org/10.2307/3062154. (ISSN: 0003-486X arXiv:math/0409365 [math.CA])

    Article  MathSciNet  MATH  Google Scholar 

  16. Mirek, M., Stein, E.M., Zorin-Kranich, P.: “A bootstrapping approach to jump inequalities”. In: Anal. PDE (2018). arXiv:1808.09048 [math.CA] (To appear)

  17. Mirek, M., Stein, E.M., Zorin-Kranich, P.: Jump inequalities for translation-invariant operators of Radon type on \(\mathbb{Z}^d\) (2018). arXiv:1809.03803 [math.CA] (Preprint)

  18. Nevo, A., Stein, E.M.: A generalization of Birkhoff’s pointwise ergodic theorem. Acta Math. 173(1), 135–154 (1994). https://doi.org/10.1007/BF02392571. (ISSN: 0001- 5962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pisier, G.: Martingales in Banach spaces, vol. 155. Cambridge Studies in Advanced Mathematics, pp. xxviii+561. Cambridge University Press, Cambridge (2016) (ISBN: 978-1-107-13724-0)

  20. Pisier, G.: The \(K_t\)-functional for the interpolation couple \(L_1(A_0), L_\infty (A_1)\). J. Approx. Theory 73(1), 106–117 (1993). https://doi.org/10.1006/jath.1993.1032. (ISSN: 0021-9045 arXiv:math/9201232)

    Article  MathSciNet  Google Scholar 

  21. Pisier, G., Xu, Q.H.: The strong \(p\)-variation of martingales and orthogonal series. Probab. Theory Relat. Fields 77(4), 497–514 (1988). https://doi.org/10.1007/BF00959613. (ISSN: 0178-8051)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rota, G.-C.: An “Alternierende Verfahren” for general positive operators. Bull. Am. Math. Soc. 68, 95–102 (1962). https://doi.org/10.1090/S0002-9904-1962-10737-X. (ISSN: 0002-9904)

    Article  MathSciNet  MATH  Google Scholar 

  23. Starr, N.: Operator limit theorems. Trans. Am. Math. Soc. 121, 90–115 (1966). https://doi.org/10.2307/1994334. (ISSN: 0002-9947)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stein, E.M., Weiss, N.J.: On the convergence of Poisson integrals. Trans. Am. Math. Soc. 140, 35–54 (1969). (ISSN: 0002-9947)

    Article  MathSciNet  Google Scholar 

  25. Xu, Q.: “Vector-valued Littewood-Paley-Stein theory for semigroups II”. In: Int. Math. Res. Not. (2018). arXiv:1803.05107 [math.FA] (To appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Mirek.

Additional information

Communicated by Loukas Grafakos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mariusz Mirek was partially supported by the Schmidt Fellowship and the IAS Found for Math. and by the National Science Center, NCN Grant DEC-2015/19/B/ST1/01149. Elias M. Stein was partially supported by NSF Grant DMS-1265524. Pavel Zorin-Kranich was partially supported by the Hausdorff Center for Mathematics and DFG SFB-1060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirek, M., Stein, E.M. & Zorin-Kranich, P. Jump inequalities via real interpolation. Math. Ann. 376, 797–819 (2020). https://doi.org/10.1007/s00208-019-01889-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-019-01889-2

Navigation