Skip to main content
Log in

Regularizing properties of complex Monge–Ampère flows II: Hermitian manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that a general complex Monge–Ampère flow on a Hermitian manifold can be run from an arbitrary initial condition with zero Lelong number at all points. Using this property, we confirm a conjecture of Tosatti–Weinkove: the Chern–Ricci flow performs a canonical surgical contraction. Finally, we study a generalization of the Chern–Ricci flow on compact Hermitian manifolds, namely the twisted Chern–Ricci flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After this paper was completed, the author learned that Xiaolan Nie proved the first statement of the conjecture for complex surfaces (cf. [26]). She also proved that the Chern–Ricci flow can be run from a bounded data. The author would like to thank Xiaolan Nie for sending her preprint.

References

  1. Aubin, T.: Équation du type Monge–Ampère sur les variétés Kählériennes compactes. Bull. Sci. Math. 102(1), 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Boucksom, S., Guedj, V.: Regularizing properties of the Kähler–Ricci flow. In: An Introduction to the Kähler-Ricci Flow, Lecture Notes in Mathematics, vol. 2086, pp. 189–237. Springer, Switzerland (2013)

    Google Scholar 

  3. Błocki, Z., Kołodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. 135(7), 2089–2093 (2007)

    Article  MathSciNet  Google Scholar 

  4. Błocki, Z.: A gradient estimate in the Calabi–Yau theorem. Math. Ann. 344, 317–327 (2009)

    Article  MathSciNet  Google Scholar 

  5. Błocki, Z.: On the uniform estimate in the Calabi–Yau theorem. Sci. China Math. 54(7), 1375–1377 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cao, H.: Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds. Invent. Math. 81, 359–372 (1985)

    Article  MathSciNet  Google Scholar 

  7. Chen, X.X., Ding, W.: Ricci flow on surfaces with degenerate initial metrics. J. Partial Differ. Equ. 20(3), 193–202 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Cherrier, P.: Équation de Monge–Ampère sur les variétés Hermitiennes compactes. Bull. Sci. Math. 2(111), 343–383 (1987)

    MathSciNet  MATH  Google Scholar 

  9. Collins, T., Székelyhidi, G.: The twisted Kähler–Ricci flow. J. reine angew. Math. Ahead of Print (2012). arXiv:1207.5441 [math.DG]

  10. Demailly, J.P., Kollár, J.: Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 4(4), 525–556 (2001)

    Article  Google Scholar 

  11. Dinew, S., Kołodziej, S.: Pluripotential Estimates on Compact Hermitian Manifolds. Advanced Lectures in Mathematics, vol. 21. International Press, Boston (2012)

    MATH  Google Scholar 

  12. Di Nezza, E., Lu, H.C.: Uniqueness and short time regularity of the weak Kähler–Ricci flow. Adv. Math. 305(2), 953–993 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fang, S., Tosatti, V., Weinkove, B., Zheng, T.: Inoue surfaces and the Chern–Ricci flow. J. Funct. Anal. 271(11), 3162–3185 (2016)

    Article  MathSciNet  Google Scholar 

  14. Gill, M.: Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011)

    Article  Google Scholar 

  15. Gill, M.: The Chern–Ricci flow on smooth minimal models of general type (2015). arXiv:1307.0066 [math.DG] (preprint)

  16. Guan, B., Li, Q.: Complex Monge–Ampère equations and totally real submanifolds. Adv. Math. 3(225), 1185–1223 (2010)

    Article  Google Scholar 

  17. Gill, M., Smith, D.: The behavior of the Chern scalar curvature under the Chern–Ricci flow. Proc. Am. Math. Soc. 143(11), 4875–4883 (2015)

    Article  MathSciNet  Google Scholar 

  18. Guedj, V., Zeriahi, A.: Regularizing properties of the twisted Kähler–Ricci flow. J. reine angew. Math. Ahead of Print (2013). arXiv:1306.4089 [math.CV]

  19. Hanani, A.: Equations du type de Monge–Ampère sur les variétés hermitiennes compactes. J. Funct. Anal. 137(1), 49–75 (1996)

    Article  MathSciNet  Google Scholar 

  20. Kołodziej, S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)

    Article  MathSciNet  Google Scholar 

  21. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, River Edge (1996)

  22. Laurent, J., Valencia, E.A.R.: On the Chern–Ricci flow and its solitons for Lie groups (2013). arXiv:1311.0832

  23. Liu, K., Yang, X.: Geometry of Hermitian manifolds. Int. J. Math. 23(6), 40 (2012)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, N.C.: The complex Monge–Ampère type equation on compact Hermitian manifolds applications. Adv. Math. 286, 240–285 (2016)

    Article  MathSciNet  Google Scholar 

  25. Nie, X.: Regularity of a complex Monge–Ampère equation on Hermitian manifolds. Commun. Anal. Geom. 25(2), 833–856 (2014)

    Article  Google Scholar 

  26. Nie, X.: Weak solutions of the Chern–Ricci flow on compact complex surfaces (2017). arXiv:1701.04965 [math.DG] (preprint)

  27. Phong, D.H., Picard, S., Zhang, X.: Geometric flows and Strominger systems (2015). arXiv:1508.03315 [math.DG] (preprint)

  28. Phong, D.H., Picard, S., Zhang, X.: Anomaly flows (2016). arXiv:1610.02739 [math.DG] (preprint)

  29. Phong, D.H., Picard, S., Zhang, X.: The anomaly flow and the Fu-Yau equation (2016). arXiv:1610.02740 [math.DG] (preprint)

  30. Phong, D.H., Sturm, J.: The Dirichlet problem for degenerate complex Monge–Ampère equations. Commun. Anal. Geom. 18(1), 145–170 (2010)

    Article  Google Scholar 

  31. Skoda, H.: Sous-ensembles analytiques d’ordre fini ou infini dans \({\mathbb{C}}^{n}\). Bull. Soc. Math. Fr. 100, 353–408 (1972)

    Article  MathSciNet  Google Scholar 

  32. Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 2010(16), 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Streets, J., Tian, G.: Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011)

    Article  MathSciNet  Google Scholar 

  34. Streets, J., Tian, G.: Regularity results for pluriclosed flow. Geom. Topol. 17(4), 2389–2429 (2013)

    Article  MathSciNet  Google Scholar 

  35. Song, J., Tian, G.: The Kähler-Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017)

    Article  MathSciNet  Google Scholar 

  36. Song, J., Weinkove, B.: Contracting exceptional divisors by the Kähler–Ricci flow. Duke Math. J. 162(2), 367–415 (2013)

    Article  MathSciNet  Google Scholar 

  37. Székelyhidi, G., Tosatti, V.: Regularity of weak solutions of a complex Monge–Ampère equation. Anal. PDE 4(3), 369–378 (2011)

    Article  MathSciNet  Google Scholar 

  38. Tô, T.D.: Regularizing properties of complex Monge–Ampère flows. J. Funct. Anal. 272(5), 2058–2091 (2017)

    Article  MathSciNet  Google Scholar 

  39. Tsuji, H.: Existence and degeneration of Kähler–Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)

    Article  MathSciNet  Google Scholar 

  40. Tosatti, V., Weinkove, B.: Estimates for the complex Monge–Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14(4), 1187–1195 (2010)

    Article  MathSciNet  Google Scholar 

  41. Tosatti, V., Weinkove, B.: The Chern–Ricci flow on complex surfaces. Compos. Math. 149(12), 2101–2138 (2013)

    Article  MathSciNet  Google Scholar 

  42. Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern–Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)

    Article  MathSciNet  Google Scholar 

  43. Tosatti, V., Weinkove, W., Yang, X.: Collapsing of the Chern–Ricci flow on elliptic surfaces. Math. Ann. 362(3–4), 1223–1271 (2015)

    Article  MathSciNet  Google Scholar 

  44. Tian, G., Zhang, Z.: On the Kähler–Ricci flow of projective manifolds of general type. Chin. Ann. Math. 27(2), 179–192 (2006)

    Article  Google Scholar 

  45. Yang, X.: The Chern–Ricci flow and holomorphic bisectional curvature. Sci. China Math. 59(11), 2199–2204 (2016)

    Article  MathSciNet  Google Scholar 

  46. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  Google Scholar 

  47. Zeriahi, A.: Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions. Indiana Univ. Math. J. 50(1), 671–703 (2001)

    Article  MathSciNet  Google Scholar 

  48. Zheng, T.: The Chern–Ricci flow on Oeljeklaus–Toma manifolds (2015). arXiv:1505.07299

Download references

Acknowledgements

The author is grateful to his supervisor Vincent Guedj for support, suggestions and encouragement. The author thanks Valentino Tosatti and Ben Weinkove for their interest in this work and helpful comments. We also thank Thu Hang Nguyen, Van Hoang Nguyen and Ahmed Zeriahi for very useful discussions. The author would like to thank the referee for useful comments and suggestions. This work is supported by the Jean-Pierre Aguilar fellowship of the CFM foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tat Dat Tô.

Additional information

Communicated by Ngaiming Mok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tô, T.D. Regularizing properties of complex Monge–Ampère flows II: Hermitian manifolds. Math. Ann. 372, 699–741 (2018). https://doi.org/10.1007/s00208-017-1574-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-017-1574-7

Navigation