Skip to main content
Log in

Sobolev spaces and approximation by affine spanning systems

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We develop conditions on a Sobolev function \(\psi \in W^{m,p}({\mathbb{R}}^d)\) such that if \(\widehat{\psi}(0) = 1\) and ψ satisfies the Strang–Fix conditions to order m − 1, then a scale averaged approximation formula holds for all \(f \in W^{m,p}({\mathbb{R}}^d)\) :

$$ f(x) = \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \sum_{k \in {{\mathbb{Z}}}^d} c_{j,k}\psi(a_j x - k) \quad {\rm in} W^{m, p}({{\mathbb{R}}}^d).$$

The dilations { a j } are lacunary, for example a j =  2j, and the coefficients c j,k are explicit local averages of f, or even pointwise sampled values, when f has some smoothness. For convergence just in \({W^{m - 1,p}({\mathbb{R}}^d)}\) the scale averaging is unnecessary and one has the simpler formula \(f(x) = \lim_{j \to \infty} \sum_{k \in {\mathbb{Z}}^d} c_{j,k}\psi(a_j x - k)\) . The Strang–Fix rates of approximation are recovered. As a corollary of the scale averaged formula, we deduce new density or “spanning” criteria for the small scale affine system \(\{\psi(a_j x - k) : j > 0, k \in {\mathbb{Z}}^d \}\) in \(W^{m,p}({\mathbb{R}}^d)\) . We also span Sobolev space by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian affine system span Sobolev space?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. (1975). Sobolev spaces. Academic, New York

    MATH  Google Scholar 

  2. Aldroubi A. and Feichtinger H.G. (1998). Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The L p-theory. Proc. Am. Math. Soc. 126: 2677–2686

    Article  MATH  MathSciNet  Google Scholar 

  3. Aldroubi A. and Gröchenig K. (2001). Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43: 585–620

    Article  MATH  MathSciNet  Google Scholar 

  4. Babuška I. (1970). Approximation by hill functions. Comment Math. Univ. Carolinae 11: 787–811

    MathSciNet  Google Scholar 

  5. Bui H.-Q. and Laugesen R.S. (2005). Affine systems that span Lebesgue spaces. J. Fourier Anal. Appl. 11: 533–556

    Article  MATH  MathSciNet  Google Scholar 

  6. Bui, H.-Q., Laugesen, R.S.: Spanning and sampling in Lebesgue and Sobolev spaces. University of Canterbury Research Report UCDMS2004/8, (2004). www.math.uiuc.edu/~laugesen/publications.html

  7. Bui, H.-Q., Laugesen, R.S.: Approximation and spanning in the Hardy space, by affine systems. Constr Approx, appeared online (2007)

  8. Bui, H.-Q., Laugesen, R.S.: Affine synthesis onto Lebesgue and Hardy spaces. Indiana Univ. Math. J. (2007) (to appear)

  9. Bui, H.-Q., Paluszyński, M.: On the phi and psi transforms of Frazier and Jawerth. University of Canterbury Research Report UCDMS2004/11, 18 p (2004)

  10. Casazza P.G. and Christensen O. (2001). Weyl–Heisenberg frames for subspaces of \(L^2({\mathbb{R}})\). Proc. Am. Math. Soc. 129: 145–154

    Article  MATH  MathSciNet  Google Scholar 

  11. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2003)

  12. Chui C.K. and Sun Q. (2006). Affine frame decompositions and shift-invariant spaces. Appl. Comput. Harmon Anal. 20: 74–107

    Article  MATH  MathSciNet  Google Scholar 

  13. Daubechies I. (1990). The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inform. Theory 36: 961–1005

    Article  MATH  MathSciNet  Google Scholar 

  14. Filippov V.I. and Oswald P. (1995). Representation in L p by series of translates and dilates of one function. J. Approx. Th 82: 15–29

    Article  MATH  MathSciNet  Google Scholar 

  15. Fix G. and Strang G. (1969). Fourier analysis of the finite element method in Ritz–Galerkin theory. Stud. Appl. Math. 48: 265–273

    MATH  MathSciNet  Google Scholar 

  16. Frazier, M., Jawerth, B., Weiss, G.: Littlewood-Paley theory and the study of function spaces. CBMS Reg Conf Ser in Math, No. 79. Amer. Math. Soc., Providence (1991)

  17. Gilbert J.E., Han Y.S., Hogan J.A., Lakey J.D., Weiland D. and Weiss G. (2002). Smooth molecular decompositions of functions and singular integral operators. Memoirs Am. Math. Soc. 156(742): 74

    MathSciNet  Google Scholar 

  18. Guglielmo F. (1969). Construction d’approximations des espaces de Sobolev sur des réseaux en simplexes. Calcolo 6: 279–331

    Article  MATH  MathSciNet  Google Scholar 

  19. Hernández E. and Weiss G. (1996). A First Course on Wavelets. CRC, Boca Raton

    MATH  Google Scholar 

  20. Holtz O. and Ron A. (2005). Approximation orders of shift-invariant subspaces of \(W^s_2({\mathbb{R}}^d)\). J. Approx. Theory 132: 97–148

    Article  MATH  MathSciNet  Google Scholar 

  21. Jetter K. and Zhou D.-X. (1997). Seminorm and full norm order of linear approximation from shift-invariant spaces. Rend. Sem. Mat. Fis. Milano 65(1995): 277–302

    MathSciNet  Google Scholar 

  22. Jia R.-Q. (2004). Approximation with scaled shift-invariant spaces by means of quasi-projection operators. J. Approx. Theory 131: 30–46

    Article  MATH  MathSciNet  Google Scholar 

  23. Jia R.-Q., Wang J. and Zhou D.-X. (2003). Compactly supported wavelet bases for Sobolev spaces. Appl. Comput. Harmon Anal. 15: 224–241

    Article  MATH  MathSciNet  Google Scholar 

  24. Johnson M.J. (1997). On the approximation order of principal shift-invariant subspaces of L p(R d). J. Approx. Theory 91: 279–319

    Article  MATH  MathSciNet  Google Scholar 

  25. Laugesen, R.S.: Affine synthesis onto L p when 0 <  p ≤  1. J. Fourier Anal. Appl. (2007) (to appear)

  26. Maz’ya V. and Schmidt G. (1996). On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16: 13–29

    Article  MATH  MathSciNet  Google Scholar 

  27. Maz’ya V. and Schmidt G. (2001). On quasi-interpolation with non-uniformly distributed centers on domains and manifolds. J. Approx. Theory 110: 125–145

    Article  MATH  MathSciNet  Google Scholar 

  28. Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Mikhlin, S.G.: Approximation on a rectangular grid. Translated by R. S. Anderssen, T. O. Shaposhnikova. Sijthoff & Noordhoff, The Netherlands (1979)

  30. Novak E. and Triebel H. (2006). Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23: 325–350

    Article  MATH  MathSciNet  Google Scholar 

  31. Schmidt, G.: Approximate approximations and their applications. In: The Maz’ya anniversary collection, Vol. 1 (Rostock, 1998), pp. 111–136. Oper Theory Adv Appl 109. Birkhäuser, Basel (1999)

  32. Schoenberg, I.J.: Contributions to the problem of approximation of equidistant data by analytic functions. Parts A, B. Quart. Appl. Math. 4, 45–99, 112–141 (1946)

  33. Strang, G.: The finite element method and approximation theory. In: Hubbard, B. (ed.) Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970), pp. 547–583. Academic, New York (1971)

  34. Strang, G., Fix, G.: A Fourier analysis of the finite element variational method. In: Geymonat, G. (ed.) Constructive Aspects of Functional Analysis, pp. 793–840. C.I.M.E. (1973)

  35. Terekhin, P.A.: Inequalities for the components of summable functions and their representations by elements of a system of contractions and shifts. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 8, 74–81 (1999); translation in Russian Math. (Iz. VUZ) 43(8), 70–77 (1999)

  36. Terekhin P.A. (1999). Translates and dilates of function with nonzero integral (Russian). Math. Mech. (published by Saratov University) 1: 67–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Laugesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, HQ., Laugesen, R.S. Sobolev spaces and approximation by affine spanning systems. Math. Ann. 341, 347–389 (2008). https://doi.org/10.1007/s00208-007-0193-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0193-0

Mathematics Subject Classification (2000)

Navigation