Skip to main content
Log in

Beyond the Classical Cauchy–Born Rule

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Physically motivated variational problems involving non-convex energies are often formulated in a discrete setting and contain boundary conditions. The long-range interactions in such problems, combined with constraints imposed by lattice discreteness, can give rise to the phenomenon of geometric frustration even in a one-dimensional setting. While non-convexity entails the formation of microstructures, incompatibility between interactions operating at different scales can produce nontrivial mixing effects which are exacerbated in the case of incommensurability between the optimal microstructures and the scale of the underlying lattice. Unraveling the intricacies of the underlying interplay between non-convexity, non-locality and discreteness represents the main goal of this study. While in general one cannot expect that ground states in such problems possess global properties, such as periodicity, in some cases the appropriately defined ‘global’ solutions exist, and are sufficient to describe the corresponding continuum (homogenized) limits. We interpret those cases as complying with a Generalized Cauchy–Born (GCB) rule, and present a new class of problems with geometrical frustration which comply with GCB rule in one range of (loading) parameters while being strictly outside this class in a complimentary range. A general approach to problems with such ‘mixed’ behavior is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Manuscript has no associated data.

References

  1. Alberti, G., Bellettini, G.: A non-local anisotropic model for phase transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9, 261–284, 1998

    MathSciNet  MATH  Google Scholar 

  2. Alberti, G., Müller, S.: A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54, 761–825, 2001

    MathSciNet  MATH  Google Scholar 

  3. Alicandro, R., Cicalese, M.: A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36, 1–37, 2004

    MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  5. Ansini, N., Braides, A., Zimmer, J.: Minimising movements for oscillating energies: the critical regime. Proc. R. Soc. Edinb. A 149, 719–737, 2019

    MATH  Google Scholar 

  6. Aubry, S.: Exact models with a complete Devil’s staircase. J. Phys. C Solid State Phys. 16(13), 2497–2508, 1983

    ADS  Google Scholar 

  7. Aubry, S.: The new concept of transitions by breaking of analyticity in a crystallographic model. In: Solitons and Condensed Matter Physics, pp. 264–277. Springer, Berlin, 1978

  8. Aubry, S.: Defectibility and frustration in incommensurate structures: the Devil’s staircase transformation. Ferroelectrics 24, 53–60, 1980

    ADS  Google Scholar 

  9. Aubry, S., Daeron, P.Y Le.: The discrete Frenkel–Kontorova model and its extensions: I. Exact results for the ground-states. Phys. D Nonlinear Phenom 8, 381–422, 1983

    ADS  MathSciNet  MATH  Google Scholar 

  10. Bak, P.: Commensurate phases, incommensurate phases and the devil’s staircase. Rep. Prog. Phys 45, 587, 1982

    ADS  MathSciNet  Google Scholar 

  11. Bak, P., Bruinsma, R.: One-dimensional Ising model and the complete devil’s staircase. Phys. Rev. Lett. 49, 249, 1982

    ADS  MathSciNet  Google Scholar 

  12. Baldelli, A.A.L., Bourdin, B., Marigo, J.-J., Maurini, C.: Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model. Contin. Mech. Thermodyn. 25, 243–268, 2013

    ADS  MathSciNet  MATH  Google Scholar 

  13. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. In: Analysis and Continuum Mechanics, pp. 647–686. Springer, Berlin, 1989

  14. Bangert, V.: Mather sets for twist maps and geodesics on tori. In: Dynamics Reported, pp. 1–56. Vieweg Teubner Verlag, Wiesbaden, 1988

  15. Bellettini, G., Buttà, P., Presutti, E.: Sharp interface limits for non-local anisotropic interactions. Arch. Ration. Mech. Anal. 159, 109–135, 2001

    MathSciNet  MATH  Google Scholar 

  16. Besicovitch, A.S.: Almost Periodic Functions. Dover, New York (1954)

    Google Scholar 

  17. Blanc, X., Le Bris, C., Lions, P.-L.: From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164, 341–381, 2002

    MathSciNet  MATH  Google Scholar 

  18. Böttcher, A., Grudsky, S.M.: Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser Verlag, Basel (2000)

    MATH  Google Scholar 

  19. Bourdin, B., Francfort, G., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91, 5–148, 2008

    MathSciNet  MATH  Google Scholar 

  20. Braides, A.: Approximation of Free-Discontinuity Problems. Springer, Berlin (1998)

    MATH  Google Scholar 

  21. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  22. Braides, A.: A handbook of \(\Gamma \)-convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 3. Elsevier, New York (2006)

    Google Scholar 

  23. Braides, A.: Local Minimization, Variational Evolution and \(\Gamma \)-Convergence. Springer, Berlin (2014)

    MATH  Google Scholar 

  24. Braides, A., Causin, A., Solci, M.: A homogenization result for interacting elastic and brittle media. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 474, 2018118, 2018

    MathSciNet  MATH  Google Scholar 

  25. Braides, A., Cicalese, M.: Surface energies in nonconvex discrete systems. Math. Models Methods Appl. Sci. 17, 985–1037, 2007

    MathSciNet  MATH  Google Scholar 

  26. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  27. Braides, A., Gelli, M.S.: Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7, 41–66, 2002

    MathSciNet  MATH  Google Scholar 

  28. Braides, A., Gelli, M.S.: From discrete systems to continuous variational problems: an introduction. In: Braides, A., Chiadò Piat, V. (eds.) Topics on Concentration Phenomena and Problems with Multiple Scales, pp. 3–77. Springer, Berlin (2006)

    MATH  Google Scholar 

  29. Braides, A., Gelli, M.S., Sigalotti, M.: The passage from non-convex discrete systems to variational problems in Sobolev spaces: the one-dimensional case. Proc. Steklov Inst. Math. 236, 395–414, 2002

    MATH  Google Scholar 

  30. Braides, A., Lew, A.J., Ortiz, M.: Effective cohesive behavior of layers of interatomic planes. Arch. Ration. Mech. Anal. 180, 151–182, 2006

    MathSciNet  MATH  Google Scholar 

  31. Braides, A., Maslennikov, M., Sigalotti, L.: Homogenization by blow-up. Appl. Anal. 87, 1341–1356, 2008

    MathSciNet  MATH  Google Scholar 

  32. Braides, A., Solci, M.: Geometric Flow on Planar Lattices. Birkhäuser, Basel (2021)

    MATH  Google Scholar 

  33. Braides, A., Tribuzio, A.: Perturbed minimizing movements of families of functionals. Discrete Contin. Dyn. Syst. 14, 373–393, 2021

    MathSciNet  MATH  Google Scholar 

  34. Braides, A., Truskinovsky, L.: Asymptotic expansions by Gamma-convergence. Contin. Mech. Therm. 20, 21–62, 2008

    MATH  Google Scholar 

  35. Braun, O.M., Kivshar, Y.S.: The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  36. Brezis, H., Nguyen, H.-M.: \(\Gamma \)-convergence of non-local, non-convex functionals in one dimension. Commun. Contemp. Math. 22, 1950077, 2020

    MathSciNet  MATH  Google Scholar 

  37. Cazeaux, P., Luskin, M.: Cauchy–Born strain energy density for coupled incommensurate elastic chains. M2AN Math. Model. Numer. Anal. 52, 729–749, 2018

    MathSciNet  MATH  Google Scholar 

  38. Chakrapani, N., Wei, B., Carrillo, A., Ajayan, P.M., Kane, R.S.: Capillarity-driven assembly of two-dimensional cellular carbon nanotube foams. Proc. Natl. Acad. Sci. USA 101, 4009–4012, 2004

    ADS  Google Scholar 

  39. Choksi, R.: Scaling laws in microphase separation of Diblock copolymers. J. Nonlinear Sci. 11, 223–236, 2001

    ADS  MathSciNet  MATH  Google Scholar 

  40. Conti, S., Dolzmann, G., Kirchheim, B., Müller, S.: Sufficient conditions for the validity of the Cauchy–Born rule close to SO(n). J. Eur. Math. Soc. 8, 515–539, 2006

    MathSciNet  MATH  Google Scholar 

  41. Dal Maso, G.: An Introduction to \(\Gamma \)-convergence. Birkhäuser, Basel (1994)

    Google Scholar 

  42. de Gennes, P.G.: “Pincements’’ de Skoulios et structures incommensurables. J. Phys. Lett. 44, 657–664, 1983

    Google Scholar 

  43. De Giorgi, E.: Sulla convergenza di alcune successioni di integrali del tipo dell’area. Rend. Mat. 8, 277–294, 1975

    MathSciNet  MATH  Google Scholar 

  44. De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Kac potentials 1. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7, 663–696, 1994

    MathSciNet  MATH  Google Scholar 

  45. Dipierro, S., Miraglio, P., Valdinoci, E.: (Non)local \(\Gamma \)-convergence. Bruno Pini Math. Anal. Semin. 11, 68–93, 2020

    MathSciNet  Google Scholar 

  46. Wei, E., Ming, P.: Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183, 241–297, 2007

    MathSciNet  MATH  Google Scholar 

  47. Ericksen, J.: On the Cauchy–Born rule. Math. Mech. Solids 13, 199–220, 2008

    MathSciNet  MATH  Google Scholar 

  48. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  49. Fathi, A.: The Weak KAM Theorem in Lagrangian Dynamics. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  50. Fisher, M.E., Selke, W.: Infinitely many commensurate phases in a simple Ising model. Phys. Rev. Lett. 44, 1502, 1980

    ADS  MathSciNet  MATH  Google Scholar 

  51. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) spaces. Springer, New York (2007)

    MATH  Google Scholar 

  52. Fonseca, I., Müller, S.: Quasiconvex integrands and lower semicontinuity in \(L^1\). SIAM J. Math. Anal. 23, 1081–1098, 1992

    MathSciNet  MATH  Google Scholar 

  53. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342, 1998

    ADS  MathSciNet  MATH  Google Scholar 

  54. Garibaldi, E., Thieullen, P.: Minimizing orbits in the discrete Aubry–Mather model. Nonlinearity 24(2), 563–611, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  55. Geim, A., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461–463, 2003

    ADS  Google Scholar 

  56. Giuliani, A., Lebowitz, J.L., Lieb, E.H.: Ising models with long-range antiferromagnetic and short-range ferromagnetic interactions. Phys. Rev. B 74, 064420, 2006

    ADS  Google Scholar 

  57. Godrèche, C., de Seze, L.: Pincements de Skoulios–de Gennes: observations numériques. J. Phys. Lett. 46, 39–48, 1985

    Google Scholar 

  58. Goldman, D., Muratov, C.B., Serfaty, S.: The \(\Gamma \)-limit of the two-dimensional Ohta-Kawasaki energy. I. Droplet density. Arch. Ration. Mech. Anal. 210, 581–613, 2013

  59. Gomes, D.A.: Viscosity solution method and the discrete Aubry–Mather problem. Discrete Contin. Dyn. Syst. 13, 103–116, 2005

    MathSciNet  MATH  Google Scholar 

  60. Grabovsky, Y., Truskinovsky, L.: The flip side of buckling. Contin. Mech. Therm. 19(3), 211–243, 2007

    MathSciNet  MATH  Google Scholar 

  61. Grabovsky, Y., Truskinovsky, L.: Normality condition in elasticity. J. Nonlinear Sci. 24, 1125–1146, 2014

    ADS  MathSciNet  MATH  Google Scholar 

  62. Griffiths, R.B.: Frenkel–Kontorova models of commensurate-incommensurate phase transitions. Fundam. Probl. Stat. Mech. 7, 69–110, 1990

    MathSciNet  Google Scholar 

  63. Griffiths, R.B., Chou, W.: Effective potentials: a new approach and new results for one-dimensional systems with competing length scales. Phys. Rev. Lett. 56, 1929, 1986

    ADS  Google Scholar 

  64. Hood, K., Caillé, A.: Ground states of coupled double-chain models. Phys. Rev. A 42, 2150, 1990

    ADS  Google Scholar 

  65. Hudson, T., Ortner, C.: On the stability of Bravais lattices and their Cauchy–Born approximations. M2AN Math. Model. Numer. Anal. 46, 81–110, 2012

  66. Hutchinson, J., Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191, 1991

    Google Scholar 

  67. Janssen, T., Janner, A.: Incommensurability in crystals. Adv. Phys. 36, 519–624, 1987

    ADS  MathSciNet  Google Scholar 

  68. Kohn, R.V.: The relaxation of a double-well energy. Contin. Mech. Therm. 3, 193–236, 1991

    MathSciNet  MATH  Google Scholar 

  69. Khoei, A.R., Qomi, M.A., Kazemi, M.T., Aghaei, A.: An investigation on the validity of Cauchy–Born hypothesis using Sutton-Chen many-body potential. Comput. Mater. Sci. 44, 999–1006, 2009

    Google Scholar 

  70. Kozlov, S.M.: Averaging of random operators. Mat. Sb. (N.S.) 109, 188–202 1979

  71. Kristensen, J.: On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16, 1–13, 1999

  72. Lee, E.-C., Kee-Joo, C.: Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO. Phys. Rev. B 69, 085205, 2004

    ADS  Google Scholar 

  73. León Baldelli, A.A., Bourdin, B., Marigo, J.J., Maurini, C.: Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model. Contin. Mech. Therm. 25, 243–268, 2012

  74. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  75. Lewin, M., Blanc, X.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306, 2015

    MathSciNet  MATH  Google Scholar 

  76. Makridakis, C., Süli, E.: Finite element analysis of Cauchy–Born approximations to atomistic models. Arch. Ration. Mech. Anal. 207, 813–843, 2013

    MathSciNet  MATH  Google Scholar 

  77. Marchand, M., Hood, K., Caillé, A.: Non-convex interactions and the occurrence of modulated phases. Phys. Rev. Lett. 58, 1660, 1987

    ADS  Google Scholar 

  78. Marchand, M., Hood, K., Caillé, A.: Non-convex interactions: a mechanism for the occurrence of modulated order in condensed matter. Phys. Rev. B 37, 1898, 1988

    ADS  Google Scholar 

  79. Mather, J.: Existence of quasi-periodic orbits for twist homeomorphims of the annulus. Topology 21, 457–467

  80. Meakin, P.: A simple model for elastic fracture in thin films. Thin Solid Films 151, 165–190, 1987

    ADS  Google Scholar 

  81. Meurant, G.: A review on the inverse of symmetric tridiagonal and block tridiagonal matrices. SIAM J. Matrix Anal. Appl. 13, 707–728, 1992

    MathSciNet  MATH  Google Scholar 

  82. Müller, S.: Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Ration. Mech. Anal. 99, 189–212, 1987

    MathSciNet  MATH  Google Scholar 

  83. Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Equ. 1, 169–204, 1993

    MathSciNet  MATH  Google Scholar 

  84. Novak, I., Truskinovsky, L.: Nonaffine response of skeletal muscles on the ‘descending limb’. Math. Mech. Solids 20(6), 697–720, 2015

    MathSciNet  MATH  Google Scholar 

  85. Novak, I., Truskinovsky, L.: Segmentation in cohesive systems constrained by elastic environments. Philos. Trans. R. Soc. A 375, 20160160, 2017

  86. Pagano, S., Paroni, R.: A simple model for phase transitions: from the discrete to the continuum problem. Q. Appl. Math. 61, 89–109, 2003

    MathSciNet  MATH  Google Scholar 

  87. Pokroy, B., Kang, S.H., Mahadevan, L., Aizemberg, J.: Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240, 2009

    Google Scholar 

  88. Pozrikidis, C.: On the applicability of the Cauchy–Born rule. Comput. Mater. Sci. 46, 438–442, 2009

    Google Scholar 

  89. Puglisi, G., Truskinovsky, L.: Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53, 655–679, 2005

    ADS  MathSciNet  MATH  Google Scholar 

  90. Ren, X., Truskinovsky, L.: Finite scale microstructures in nonlocal elasticity. J. Elasticity 59, 319–355, 2000

    MathSciNet  MATH  Google Scholar 

  91. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8, 1073–1078, 1967

  92. Rogers, R.C., Truskinovsky, L.: Discretization and hysteresis. Phys. B Condens. Matter 233, 370–375, 1997

    ADS  Google Scholar 

  93. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  94. Selke, W.: The ANNNI model: theoretical analysis and experimental application. Phys. Rep. 170(4), 213–264, 1988

    ADS  MathSciNet  Google Scholar 

  95. Steinmann, P., Elizondo, A., Sunyk, R.: Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling. Model. Simul. Mat. Sci. Eng. 1, S271, 2006

    Google Scholar 

  96. Truskinovsky, L.: Fracture as a phase transition. In: Contemporary Research in the Mechanics and Mathematics of Materials, pp. 322–332, CIMNE, Barcelona, 1996

  97. Truskinovsky, L., Vitale, G., Smit, T.H.: A mechanical perspective on vertebral segmentation. Int. J. Eng. Sci. 83, 124–137, 2014

    Google Scholar 

  98. Vellinga, W.P., Van den Bosch, M., Geers, M.G.D.: Interaction between cracking, delamination and buckling in brittle elastic thin films. Int. J. Fract. 154, 195–209, 2008

    MATH  Google Scholar 

  99. Wang, K., Cai, M., Zhou, P., Hu, G.: Homogenization in a simpler way: analysis and optimization of periodic unit cells with Cauchy–Born hypothesis. Struct. Multidiscip. Optim. 64, 3911–3935, 2021

    MathSciNet  Google Scholar 

  100. Zanzotto, G.: The Cauchy–Born hypothesis, nonlinear elasticity and mechanical twinning in crystals. Acta Crystallogr. A 52, 839–849, 1996

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

AC and MS acknowledge the projects ‘Fondo di Ateneo per la Ricerca 2019’ and ‘Fondo di Ateneo per la Ricerca 2020’, funded by the University of Sassari. This work has been supported by PRIN 2017 ‘Variational methods for stationary and evolution problems with singularities and interfaces’. AB and MS are members of GNAMPA, INdAM, AC is member of GNSAGA, INdAM. The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The work of LT was supported by the Grant ANR-10-IDEX-0001-02 PSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Braides.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Variations of Boundary Data

In this appendix we state and prove some technical results which allow the modification of boundary values of test functions for the minimum problems used in various characterization of \(Q_{\textbf{m}} f\). In particular, these results allow to assume that test functions be constant close to the endpoints of the domain.

Let \({\textbf{m}}=\{m_n\}_n\) be such that \(m_n\ge 0\) for any n, and there exists \({\overline{n}}\) such that \(m_n\) is not increasing for \(n\ge {\overline{n}}\). Moreover, we assume the decay condition \(m_n=o(n^{-\beta })_{n\rightarrow +\infty }\) for some \(\beta >2\).

Let \(F_\varepsilon \) be defined as in (2.8); that is,

$$\begin{aligned} F_\varepsilon (u;I)=\sum _{\varepsilon i,\varepsilon (i-1)\in I}\varepsilon \, f\Big (\frac{u_{i}-u_{i-1}}{\varepsilon }\Big )+ \sum _{\varepsilon i,\varepsilon j\in I}\varepsilon \, m_{|i-j|} \Big (\frac{u_{i}-u_{j}}{\varepsilon }\Big )^2 \end{aligned}$$

for I interval and \(u\in {\mathcal {A}}_\varepsilon (I)\).

Lemma A.1

Let \(L>0\) and \(N_\varepsilon =\lfloor \frac{L}{\varepsilon }\rfloor \). Let \(\alpha \in (\frac{2}{\beta },1)\). Assume that \(u\in L^2(0,L)\) and \(u^\varepsilon \in {\mathcal {A}}_\varepsilon ={\mathcal {A}}_\varepsilon (0,L)\) be such that (the piecewise-affine extension of) the sequence \(u^\varepsilon \) converges to u in \(L^2(0,L)\), and \(\sup _\varepsilon (F_\varepsilon (u^\varepsilon ;[0,L])+\Vert u^\varepsilon \Vert ^2_{L^2})=S<+\infty \). Then, there exists \({\hat{u}}^{\varepsilon }\in {\mathcal {A}}_\varepsilon \) converging to u such that

  1. (i)

    \({\hat{u}}^\varepsilon _i={\hat{u}}^\varepsilon _0\) for \(i\leqq \varepsilon ^{-\alpha }\), \({\hat{u}}^\varepsilon _i={\hat{u}}^\varepsilon _{N_\varepsilon }\) for \(i\ge N_\varepsilon -\varepsilon ^{-\alpha }\);

  2. (ii)

    \(F_\varepsilon ({\hat{u}}^\varepsilon ;[0,L])\leqq F_\varepsilon (u^\varepsilon ;[0,L])+r(\varepsilon )\), where the remainder r depends only on S and f(0), and \(r(\varepsilon )\rightarrow 0\) as \(\varepsilon \rightarrow 0\).

Proof

We choose \(\alpha ^\prime \in (0,1-\alpha )\) and define \(\lambda _\varepsilon =\varepsilon ^{\alpha ^\prime }\) and \(M_\varepsilon =\lfloor \varepsilon ^{\alpha +\alpha ^\prime -1}\rfloor -1\). For \(\varepsilon \) small enough we divide \((0,\lambda _\varepsilon ]\) and \([L-\lambda _\varepsilon ,L)\) in \(M_\varepsilon +1\) intervals by setting

$$\begin{aligned} I^k_\varepsilon= & {} \Big (\frac{k\lambda _\varepsilon }{M_\varepsilon +1},\frac{(k+1)\lambda _\varepsilon }{M_\varepsilon +1}\Big ],\\ J^k_\varepsilon= & {} \Big [L-\frac{(k+1)\lambda _\varepsilon }{M_\varepsilon +1},L-\frac{k\lambda _\varepsilon }{M_\varepsilon +1}\Big ), \ \ k\in \{0,\dots , M_\varepsilon \}. \end{aligned}$$

Since

$$\begin{aligned} \frac{1}{\varepsilon }\sum _{k=1}^{M_\varepsilon } \sum _{\varepsilon i\in I_\varepsilon ^k, \varepsilon j\in I_\varepsilon ^{k-1}} m_{|i-j|}(u^\varepsilon _i-u^\varepsilon _j)^2\leqq F_\varepsilon (u^\varepsilon ;[0,L])\leqq S, \end{aligned}$$

then there exists \(k_\varepsilon ^-\in \{1,\dots , M_\varepsilon \}\) such that

$$\begin{aligned} \frac{1}{\varepsilon } \sum _{\varepsilon i\in I_\varepsilon ^{k_\varepsilon ^-}, \varepsilon j\in I_\varepsilon ^{k_\varepsilon ^--1}} m_{|i-j|}(u^\varepsilon _i-u^\varepsilon _j)^2 \leqq \frac{S}{M_\varepsilon }. \end{aligned}$$
(A.1)

The same argument allows to find \(k_\varepsilon ^+\in \{1,\dots , M_\varepsilon \}\) such that the same inequality holds for \(\varepsilon i\in J_\varepsilon ^{k_\varepsilon ^+}, \varepsilon j\in J_\varepsilon ^{k_\varepsilon ^+-1}\). Setting \(j^-_\varepsilon =\min \{j: \varepsilon j\in I_\varepsilon ^{k_\varepsilon ^-}\}\) and \(j^+_\varepsilon =\max \{j: \varepsilon j\in J_\varepsilon ^{k_\varepsilon ^+}\}\), we define \({\hat{u}}^{\varepsilon }\) by setting

$$\begin{aligned} {\hat{u}}^{\varepsilon }_i=\left\{ \begin{array}{ll} u^\varepsilon _{j^-_\varepsilon } &{} \hbox { if } i\leqq j^-_\varepsilon \\ u^\varepsilon _i &{} \hbox { if } j^-_\varepsilon \leqq i\leqq j^+_\varepsilon \\ u^\varepsilon _{j^+_\varepsilon } &{} \hbox { if } i\ge j^+_\varepsilon . \end{array} \right. \end{aligned}$$
(A.2)

Since \(j_\varepsilon ^{-}\ge L\varepsilon ^{-\alpha }\) and \(j_\varepsilon ^{+}\leqq N_\varepsilon -L\varepsilon ^{-\alpha }\), then \({\hat{u}}^\varepsilon \) satisfies claim (i). Moreover, \({\hat{u}}^\varepsilon \rightarrow u\) as \(\varepsilon \rightarrow 0\). To prove this, for simplicity we suppose that \(m_n\) is not increasing for \(n\ge 1\). Then,

$$\begin{aligned} \varepsilon \sum _{i=1}^{j^-_\varepsilon }(u^\varepsilon _i-{\hat{u}}^\varepsilon _{i})^2= & {} \varepsilon \sum _{i=1}^{j^-_\varepsilon }(u^\varepsilon _i-u^\varepsilon _{j^-_\varepsilon })^2\leqq \varepsilon \sum _{i=1}^{j^-_\varepsilon } j^-_\varepsilon \!\!\sum _{j=i+1}^{j^-_\varepsilon }\!(u^\varepsilon _i-u^\varepsilon _{i-1})^2\\\leqq & {} \frac{S}{m_1}\varepsilon ^2 (j^-_\varepsilon )^2\leqq \frac{S}{m_1}\lambda _\varepsilon ^2, \end{aligned}$$

and correspondingly \(\varepsilon \sum _{i=j^+_\varepsilon }^{\lfloor L/\varepsilon \rfloor }(u^\varepsilon _i-{\hat{u}}^\varepsilon _{i})^2\leqq \frac{S}{m_1}\lambda _\varepsilon ^2\). Setting, \(n_\varepsilon =\lfloor \frac{\lambda _\varepsilon }{\varepsilon (M_\varepsilon +1)}\rfloor \), since

$$\begin{aligned} \sum _{|i-j|\ge n_\varepsilon } m_{|i-j|}(u^{\varepsilon }_i-u^{\varepsilon }_j)^2 \leqq \frac{2}{\varepsilon } m_{n_\varepsilon } \Vert u^\varepsilon \Vert ^2_{L_2}\leqq \frac{2}{\varepsilon } m_{\lfloor \varepsilon ^{-\alpha }\rfloor } \Vert u^\varepsilon \Vert ^2_{L_2}, \end{aligned}$$

and recalling (A.1), we obtain

$$\begin{aligned} F_\varepsilon ({\hat{u}}^{\varepsilon };[0,L])\leqq F_\varepsilon (u^{\varepsilon };[0,L])+ 2\lambda _\varepsilon f(0) + \frac{C}{\varepsilon ^2} m_{\lfloor \varepsilon ^{-\alpha }\rfloor }+\frac{C}{M_\varepsilon }, \end{aligned}$$

where C denotes a constant depending only on \(\sup _\varepsilon F_\varepsilon (u^\varepsilon ;[0,L])\) and \(\sup _\varepsilon \Vert u^\varepsilon \Vert _{L^2}\). Setting

$$\begin{aligned} r(t)=2f(0) t^{\alpha ^\prime }+Ct^{\alpha \beta -2}+C t^{1-\alpha -\alpha ^\prime }, \end{aligned}$$

we conclude the proof since \(m_n=o(n^{-\beta })\) and \(\alpha >\frac{2}{\beta }\)\(\quad \square \)

Let \(a,b>0\). We define the functional \(E_\varepsilon (u,v;I)\) by setting

$$\begin{aligned} E_\varepsilon (u,v;I)= & {} \sum _{\varepsilon i,\varepsilon (i-i)\in I}\varepsilon \, f\Big (\frac{u_i-u_{i-1}}{\varepsilon }\Big )\nonumber \\{} & {} + \frac{a}{2}\sum _{\varepsilon i,\varepsilon (i-i)\in I}\varepsilon \, \Big (\frac{v_{i}-v_{i-1}}{\varepsilon }\Big )^2+\frac{b}{2\varepsilon }\sum _{\varepsilon i\in I}(u_i-v_i)^2 \end{aligned}$$
(A.3)

for I interval and \(u,v\in {\mathcal {A}}_\varepsilon (I)\).

Lemma A.2

Let \(L>0\) and \(N_\varepsilon =\lfloor \frac{L}{\varepsilon }\rfloor \). Let \(\alpha \in (\frac{2}{\beta },1)\). Assume that \(u^\varepsilon , v^\varepsilon \in {\mathcal {A}}_\varepsilon \) be such that (the piecewise-affine extensions of) \(u^\varepsilon \) and \(v^\varepsilon \) converge to u in \(L^2(0,L)\) and \(\sup _\varepsilon (E_\varepsilon (u^\varepsilon ;[0,L])+\Vert u^\varepsilon \Vert ^2_{L^2})=S<+\infty \). Then there exist \({\hat{u}}^{\varepsilon }, {\hat{v}}^\varepsilon \in {\mathcal {A}}_\varepsilon \) converging to u such that

  1. (i)

    \({\hat{u}}^\varepsilon _i={\hat{v}}^\varepsilon _i={\hat{u}}^\varepsilon _0\) for \(i\leqq \varepsilon ^{-\alpha }\), \({\hat{u}}^\varepsilon _i={\hat{v}}^\varepsilon _i={\hat{u}}^\varepsilon _{N_\varepsilon }\) for \(i\ge N_\varepsilon -\varepsilon ^{-\alpha }\);

  2. (ii)

    \(E_\varepsilon ({\hat{u}}^\varepsilon , {\hat{v}}^\varepsilon ;[0,L])\leqq E_\varepsilon (u^\varepsilon , v^\varepsilon ;[0,L])+r(\varepsilon )\), where the remainder r depends only on S and f(0), and \(r(\varepsilon )\rightarrow 0\) as \(\varepsilon \rightarrow 0\).

Proof

We choose \(\lambda _\varepsilon \) and \(M_\varepsilon \) as in the proof of Lemma A.1, and divide \((0,\lambda _\varepsilon ]\) and \([L-\lambda _\varepsilon ,L)\) in \(M_\varepsilon +1\) intervals, denoted by \(I^k_\varepsilon \) and \(J^k_\varepsilon \) respectively, as above. Then, there exist \(k_\varepsilon \) and \(h_\varepsilon \) in \(\{1,\dots , M_\varepsilon \}\) such that

$$\begin{aligned} \frac{1}{2\varepsilon } \sum _{\varepsilon i\in I_\varepsilon ^{k_\varepsilon }\cup J_\varepsilon ^{h_\varepsilon }} \big (a(v^\varepsilon _i-v^\varepsilon _{i-1})^2+b(u^\varepsilon _i-v^\varepsilon _{i})^2 \big ) \leqq \frac{S}{M_\varepsilon }. \end{aligned}$$
(A.4)

Setting \(j^-_\varepsilon =\min \{j: \varepsilon j\in I_\varepsilon ^{k_\varepsilon }\}\) and \(j^+_\varepsilon =\max \{j: \varepsilon j\in J_\varepsilon ^{h_\varepsilon }\}\), we define

$$\begin{aligned} {\hat{u}}^{\varepsilon }_i=\left\{ \begin{array}{ll} u^\varepsilon _{j_{\varepsilon }^-} &{} \hbox { if } i\leqq j_{\varepsilon }^- \\ u^\varepsilon _i &{} \hbox { if } j_{\varepsilon }^-< i< j_{\varepsilon }^+ \\ u^\varepsilon _{j_{\varepsilon }^+} &{} \hbox { if } i\ge j_{\varepsilon }^+ \end{array} \right. \ \ \hbox { and } \ \ \ \ {\hat{v}}^{\varepsilon }_i=\left\{ \begin{array}{ll} u^\varepsilon _{j_{\varepsilon }^-} &{} \hbox { if } i\leqq j_{\varepsilon }^- \\ v^\varepsilon _i &{} \hbox { if } j_{\varepsilon }^-< i < j_{\varepsilon }^+ \\ u^\varepsilon _{j_{\varepsilon }^+} &{} \hbox { if } i\ge j_{\varepsilon }^+, \end{array} \right. \end{aligned}$$

so that \({\hat{u}}^\varepsilon \) and \({\hat{v}}^\varepsilon \) converge to u in \(L^2\), and satisfy (i). Recalling (A.4), we get in particular that

$$\begin{aligned} \frac{a}{2\varepsilon } ({\hat{v}}^\varepsilon _{j_{\varepsilon }^-+1}-{\hat{v}}^\varepsilon _{j_{\varepsilon }^-})^2\leqq \frac{a}{\varepsilon } (v^\varepsilon _{j_{\varepsilon }^-+1}-v^\varepsilon _{j_{\varepsilon }^-})^2+ \frac{a}{\varepsilon } (v^\varepsilon _{j_{\varepsilon }^-}-u^\varepsilon _{j_{\varepsilon }^-})^2 \leqq \frac{C}{M_\varepsilon }, \end{aligned}$$

where C denotes a positive constant depending only on ab and S. The same bound holds for \(\frac{a}{2\varepsilon }({\hat{v}}^\varepsilon _{j_{\varepsilon }^+}-{\hat{v}}^\varepsilon _{j_{\varepsilon }^+-1})^2\). Hence

$$\begin{aligned} E_\varepsilon ({\hat{u}}_\varepsilon ,{\hat{v}}_\varepsilon ; [0,L])\leqq & {} 2\lambda _\varepsilon f(0) +E_\varepsilon (u^\varepsilon ,v^\varepsilon ;(0,L)) \\{} & {} +\frac{a}{2\varepsilon } ({\hat{v}}^\varepsilon _{j_{\varepsilon }^-+1}-{\hat{v}}^\varepsilon _{j_{\varepsilon }^-})^2 + \frac{a}{2\varepsilon }({\hat{v}}^\varepsilon _{j_{\varepsilon }^+}-{\hat{v}}^\varepsilon _{j_{\varepsilon }^+-1})^2 \\\leqq & {} 2\lambda _\varepsilon f(0) +E_\varepsilon (u^\varepsilon ,v^\varepsilon ;[0,L]) + \frac{2C}{M_\varepsilon }, \end{aligned}$$

concluding the proof as above. \(\quad \square \)

Remark A.3

In the hypotheses of Lemma A.2, if there exists \(\alpha \in (0,1)\) such that \(u^\varepsilon _i={\hat{u}}^\varepsilon _0\) for \(i\leqq \varepsilon ^{-\alpha }\) and \(u^\varepsilon _i={\hat{u}}^\varepsilon _{N_\varepsilon }\) for \(i\ge N_\varepsilon -\varepsilon ^{-\alpha }\) for some \(\alpha >0\), then the function \({\hat{v}}^\varepsilon \) can be chosen such that it coincides with \(u^\varepsilon \) for \(i\leqq \varepsilon ^{-\alpha ^{\prime \prime }}\) and for \(i\ge N_\varepsilon -\varepsilon ^{-\alpha ^{\prime \prime }}\) with \(\alpha ^{\prime \prime }<\alpha \).

Appendix: Formulas for \(P^{M,n}\) in the Concentrated Case

In this appendix we include some explicit computations of the functions \(P^{M,n}\) defined in (3.1), which are the energies of the locking states \(n\over M\) in the concentrated case. The formulas of these functions have been used in Sections 4.2.1 and 4.2.2 to highlight the structure of \(Q_{\textbf{m}}f(z)\) in the truncated-parabolic and double-well case, respectively. Here, we include the corresponding computations.

Truncated-parabolic case. Let f be given by (4.10). In view of (4.3), the domains of \(P^{M,0}\) and \(P^{M,M}\) are \(\{z\leqq 1\}\) and \(\{z\ge 1\}\), respectively. We recall that here

$$\begin{aligned} P^{M,0}(z)=z^2+2(m_1+m_M M^2)z^2 \ \ {\textrm{and }}\ \ P^{M,M}(z)=1+2(m_1+m_M M^2)z^2. \end{aligned}$$

For \(n=1,\dots , M-1\), we can also write

$$\begin{aligned} P^{M,n}(z)={\left\{ \begin{array}{ll} \displaystyle \frac{2m_1+1}{1-\theta _n}\big (z^2-\theta _n(2z-1)\big )+2m_M M^2z^2 &{} \displaystyle {\textrm{if }}\ z\leqq T_n^{-}\\ \displaystyle \theta _n+\frac{2m_1(2m_1+1)}{2m_1+\theta _n}z^2 +2m_M M^2 z^2 &{} \displaystyle {\textrm{if }}\ T_n^{-}\leqq z \leqq T_n^{+}\\ \displaystyle 1+\frac{2m_1}{\theta _n}\big ((z-1)^2+\theta _n(2z-1)\big ) +2m_M M^2 z^2 &{} \displaystyle {\textrm{if }}\ z\ge T_n^{+}, \end{array}\right. }\nonumber \\ \end{aligned}$$
(B.1)

where

$$\begin{aligned} T_n^{-}=\frac{2m_1+\theta _n}{2m_1+1} \ \ {\textrm{and }}\ \ T_n^{+}=\frac{2m_1+\theta _n}{2m_1}. \end{aligned}$$
Fig. 32
figure 32

Envelope of two consecutive functions \(P^{M,n}(z)\)

Note that while the formula defining \(P^{M,n}\) changes form at \(z=T_n^{-}\) and \(z=T_n^{+}\), the computation of the common tangent points of \(P^{M,n}\) and \(P^{M,n+1}\) involves only the central formula in (B.1). Consequently, the points \(s_n^+\) and \(s_n^-\) in Theorem 4.1 are

$$\begin{aligned} \begin{array}{ll} &{}\displaystyle s_n^+=s_n^+(m_1,m_M) =\frac{2m_1+\theta _n}{\sqrt{2m_1(2m_1+1)}}\ \sqrt{\frac{m_1(2m_1+1)+m_M M^2(2m_1+\theta _{n+1})}{m_1(2m_1+1)+m_M M^2(2m_1+\theta _{n})}} \\ &{}\displaystyle s_n^-=s_n^-(m_1,m_M) = \frac{2m_1+\theta _n}{\sqrt{2m_1(2m_1+1)}}\ \sqrt{\frac{m_1(2m_1+1)+m_M M^2(2m_1+\theta _{n-1})}{m_1(2m_1+1)+m_M M^2(2m_1+\theta _{n})}}. \end{array}\nonumber \\ \end{aligned}$$
(B.2)

In Fig. 32 we illustrate the envelope of two consecutive functions \(P^{M,n}(z)\), bridging energies of consecutive locking states with an affine function.

Finally, since \(s_n^+\ge T_n^-\) and \(s_n^-\leqq T_n^+\), we have the formula

$$\begin{aligned} Q_{\textbf{m}}f(z)={\left\{ \begin{array}{ll} \displaystyle z^2&{} {\textrm{if }} \ z\leqq s^+_0\\ \displaystyle r^{M,n}(z)-2(m_1+m_M M^2)z^2 &{} {\textrm{if }} \ s_n^+ \leqq z \leqq s_{n+1}^- \\ \displaystyle \frac{2m_1(1-\theta _n)}{2m_1+\theta _n}z^2+\theta _n&{} {\textrm{if }} \ s_n^- \leqq z \leqq s_{n}^+ \\ \displaystyle 1 &{} {\textrm{if }} \ s_M^- \leqq z, \end{array}\right. } \end{aligned}$$
(B.3)

where \(r^{M,n}\) is the affine function

$$\begin{aligned} r^{M,n}(z)=P^{M,n}(s_n^+)+\frac{2(z-s_n^+)}{M(s_{n+1}^--s_n^+)}. \end{aligned}$$

Bi-quadratic double-well case. Let f be given by \(f(z)=(1-|z|)^2\). By using (4.3) the domains of \(P^{M,0}\) and \(P^{M,M}\) are \(\{z\leqq 0\}\) and \(\{z\ge 0\}\), respectively, where

$$\begin{aligned} P^{M,0}(z)= & {} (1+z)^2+ 2(m_1+m_MM^2)z^2 \ \ {\textrm{and }} \\ P^{M,M}(z)= & {} (1-z)^2+ 2(m_1+m_MM^2)z^2. \end{aligned}$$

For \(n=1,\dots , M-1\)

$$\begin{aligned} P^{M,n}(z)={\left\{ \begin{array}{ll} \displaystyle \Big (\frac{1+2m_1}{1-\theta _n}+2m_M M^2\Big )z^2+2z+1 &{} \displaystyle {\textrm{if }}\ z\leqq T_n^-\\ \displaystyle (1+z)^2 +\displaystyle 2(m_1+m_M M^2)z^2-4\theta _n\Big (z+\frac{1-\theta _n}{1+2m_1}\Big )&{} \displaystyle {\textrm{if }}\ T_n^-\leqq z\leqq T_n^+\\ \displaystyle \Big (\frac{1+2m_1}{\theta _n}+2m_M M^2\Big )z^2-2z+1 &{} \displaystyle {\textrm{if }}\ z\ge T_n^+, \end{array}\right. } \end{aligned}$$

where in this case the points \(T_n^-\) and \(T_n^+\) where the formula changes are given by

$$\begin{aligned} T_n^-=-\frac{2(1-\theta _n)}{1+2m_1} \ \ {\textrm{and }}\ \ T_n^+=\frac{2\theta _n}{1+2m_1}. \end{aligned}$$

Consequently,

$$\begin{aligned} \left. \begin{array}{ll} &{}\displaystyle s_n^+(m_1,m_M)=s_n^+= \frac{2m_M M}{(1+2m_1)(1+2m_1+2m_M M^2)}+\frac{2\theta _n-1}{1+2m_1}\\ &{}\displaystyle s_n^-(m_1,m_M)=s_n^-=-\frac{2m_M M}{(1+2m_1)(1+2m_1+2m_M M^2)}+\frac{2\theta _n-1}{1+2m_1}. \end{array} \right. \end{aligned}$$
(B.4)

Since \(s_n^+\ge T_n^-\) and \(s_n^-\leqq T_n^+\), we obtain

$$\begin{aligned} Q_{\textbf{m}}f(z)={\left\{ \begin{array}{ll} (1+z)^2&{} {\textrm{if }} \ z\leqq s_0^+\\ r^{M,n}(z)-2(m_1+m_M M^2) z^2 &{} {\textrm{if }} \ s_n^+ \leqq z \leqq s_{n+1}^- \\ \displaystyle z^2+2(1-2\theta _n)z+1-\frac{4\theta _n(1-\theta _n)}{1+2m_1}&{} {\textrm{if }} \ s_n^- \leqq z \leqq s_{n}^+ \\ (1-z)^2 &{} {\textrm{if }} \ s_M^- \leqq z, \end{array}\right. } \end{aligned}$$

where \(r^{M,n}\) is the affine function

$$\begin{aligned} r^{M,n}(z)= & {} P^{M,n}(s_n^+)+\frac{M(1+2(m_1+m_M M^2))}{2}\\{} & {} \big (P^{M,n+1}(s_{n+1}^-)-P^{M,n}(s_n^+)\big )(z-s_n^+). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braides, A., Causin, A., Solci, M. et al. Beyond the Classical Cauchy–Born Rule. Arch Rational Mech Anal 247, 107 (2023). https://doi.org/10.1007/s00205-023-01942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01942-0

Navigation