Skip to main content
Log in

On the Norm Equivalence of Lyapunov Exponents for Regularizing Linear Evolution Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the top Lyapunov exponent associated to a dissipative linear evolution equation posed on a separable Hilbert or Banach space. In many applications in partial differential equations, such equations are often posed on a scale of nonequivalent spaces mitigating, e.g., integrability (\(L^p\)) or differentiability (\(W^{s, p}\)). In contrast to finite dimensions, the Lyapunov exponent could apriori depend on the choice of norm used. In this paper we show that under quite general conditions, the Lyapunov exponent of a cocycle of compact linear operators is independent of the norm used. We apply this result to two important problems from fluid mechanics: the enhanced dissipation rate for the advection diffusion equation with ergodic velocity field; and the Lyapunov exponent for the 2d Navier–Stokes equations with stochastic or periodic forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Despite a wealth of numerical evidence, in the absence of noise it is a notoriously challenging open problem to prove that positivity of Lyapunov exponents for incompressible systems of practical interest. This is already the case for low-dimensional discrete-time toy models [19] of Lagrangian flow such as the Chirikov standard map [16], for which the analogue of (6) is a wide-open problem—see, e.g., the discussion in [10, 21].

  2. When F is white-in-time and satisfies mild nondegeneracy conditions (e.g., those in [41]), the value \(\lambda _1(H^r)\) does not depend on \(u_0\). When F is time-periodic it is possible that \(\lambda _1(H^r)\) depends on \(u_0\). For more details and discussion, see Sect. 4 below.

  3. We call \(\mathcal A\) a T-invariant set if \(T^{-1} \mathcal A \supset \mathcal A\).

  4. That such weak\(^*\) limits exist follows by compactness of \(\mathcal A\). That such limiting measures are T-invariant is straightforward to check: see, e.g., Lemma 2.2.4 of [80]. The above procedure is often referred to as the Krylov-Bogolyubov argument for the existence of T-invariant measures [48].

  5. E.g., Proposition 4.3.2 of [80] and the Krein-Milman Theorem, paragraph I.A.22 in [85].

  6. When B is separable, we say that \(x \mapsto A_x\) is strongly measurable if it is Borel measurable w.r.t. the strong operator topology on L(B), or equivalently, when \(x \mapsto A_x v\) is a Borel measurable mapping for each fixed \(v \in B\). For a summary of alternative measurability requirements for the MET, see, e.g., [79].

  7. Throughout, we consider the space of closed subspaces of B with the Hausdorff metric \(d_{Haus}\) of unit spheres; see (17) for details. Here, we are asserting that \(x \mapsto F_i(x)\) is Borel measurable w.r.t. the topology induced by \(d_H\).

  8. Some authors refer to the property (9) as equivariance.

  9. The measure \({{\,\mathrm{\textrm{Vol}}\,}}_E^B\) is sometimes called the Busemann-Hausdorff measure [13] and appears naturally in Finsler geometry.

  10. A version of this argument is carried out in the proof of Lemma 4.18.

  11. This sufficient condition for passing from discrete to continuous time Lyapunov exponents is classical; see, e.g., [52].

  12. Recall the definition of the minimal angle \(\angle ^{H^s}\) in (13).

  13. When there is no confusion, we will abuse notation somewhat and write \(D_{u_0} \Phi ^t_\omega : \textbf{H}^s \rightarrow \textbf{H}^s\) for the extended operator.

References

  1. Barreira, L., Pesin, Y.B.: Lyapunov Exponents and Smooth Ergodic Theory, vol. 23. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  2. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A Math. 143(5), 905–927, 2013

    MathSciNet  MATH  Google Scholar 

  3. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure enhanced dissipation and uniform-in-diffusivity exponential mixing for advection-diffusion by stochastic Navier–Stokes. Probab. Theory Relat. Fields 179(3–4), 777–834, 2021

    MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure exponential mixing of passive scalars by the stochastic Navier–Stokes equations. Ann. Probab. 50(1), 241–303, 2022

    MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Lagrangian chaos and scalar advection in stochastic fluid mechanics. J. Eur. Math. Soc., Jan. 2022.

  6. Bedrossian, J., Zelati, M.C.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204, 2017

    MathSciNet  MATH  Google Scholar 

  7. Bedrossian, J., Zelati, MCoti, Glatt-Holtz, N.: Invariant measures for passive scalars in the small noise inviscid limit. Commun. Math. Phys., 348(1), 101–127, 2016.

  8. Bernoff, A.J., Lingevitch, J.F.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6(11), 3717–3723, 1994

    ADS  MATH  Google Scholar 

  9. Blumenthal, A.: A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete Contin. Dyn. Syst. 36(5), 2377, 2016

    MathSciNet  MATH  Google Scholar 

  10. Blumenthal, A., Xue, J., Young, L.-S.: Lyapunov exponents for random perturbations of some area-preserving maps including the standard map. Ann. Math. 185(1), 285–310, 2017

    MathSciNet  MATH  Google Scholar 

  11. Blumenthal, A., Young, L.-S.: Entropy, volume growth and SRB measures for Banach space mappings. Invent. Math. 207(2), 833–893, 2017

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bowen, L., Hayes, B., Lin, Y.F.: A multiplicative ergodic theorem for von Neumann algebra valued cocycles. Commun. Math. Phys. 384(2), 1291–1350, 2021

    ADS  MathSciNet  MATH  Google Scholar 

  13. Busemann, H.: Intrinsic area. Ann. Math., 234–267, 1947.

  14. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Courier Corporation, Chelmsford (2013)

    MATH  Google Scholar 

  15. Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  16. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 263–379, 1979

    ADS  MathSciNet  Google Scholar 

  17. Constantin, P., Foias, C.: Global lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for 2d Navier–Stokes equations, 1983.

  18. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math., pages 643–674, 2008.

  19. Crisanti, A., Falcioni, M., Vulpiani, A., Paladin, G.: Lagrangian chaos: transport, mixing and diffusion in fluids. La Rivista del Nuovo Cimento (1978-1999) 14(12), 1–80, 1991

    MathSciNet  Google Scholar 

  20. Crisanti, A., Jensen, M., Vulpiani, A., Paladin, G.: Intermittency and predictability in turbulence. Phys. Rev. Lett. 70(2), 166, 1993

    ADS  MATH  Google Scholar 

  21. Crovisier, S., Senti, S.: A problem for the 21st/22nd century. EMS Newsl. 114, 8–13, 2019

    MathSciNet  MATH  Google Scholar 

  22. Doering, C.R., Thiffeault, J.-L.: Multiscale mixing efficiencies for steady sources. Phys. Rev. E 74(2), 025301, 2006

    ADS  Google Scholar 

  23. Dragičević, D., Froyland, G., Gonzalez-Tokman, C., Vaienti,S.: A spectral approach for quenched limit theorems for random expanding dynamical systems. Commun. Math. Phys., 1–67, 2018.

  24. Dragičević, D., Froyland, G., González-Tokman, C., Vaienti, S.: A spectral approach for quenched limit theorems for random hyperbolic dynamical systems. Trans. Am. Math. Soc. 373(1), 629–664, 2020

    MathSciNet  MATH  Google Scholar 

  25. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  26. Dubrulle, B., Nazarenko, S.: On scaling laws for the transition to turbulence in uniform-shear flows. EPL (Europhys. Lett.) 27(2), 129, 1994

    ADS  Google Scholar 

  27. Dyatlov, S., Zworski, M.: Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity 28(10), 3511, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  28. Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Theory Chaotic Attract., 273–312, 1985.

  29. Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810–1851, 2019

    ADS  MathSciNet  MATH  Google Scholar 

  30. Flandoli, F., Maslowski, B.: Ergodicity of the \(2\)-D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 172(1), 119–141, 1995

    ADS  MathSciNet  MATH  Google Scholar 

  31. Foias, C., Manley, O., Rosa, R., Temam, R.: Navier–Stokes Equations and Turbulence, vol. 83. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  32. Froyland, G., Lloyd, S., Quas, A.: A semi-invertible oseledets theorem with applications to transfer operator cocycles. arXiv preprint arXiv:1001.5313, 2010.

  33. Froyland, G., Lloyd, S., Santitissadeekorn, N.: Coherent sets for nonautonomous dynamical systems. Physica D 239(16), 1527–1541, 2010

    ADS  MathSciNet  MATH  Google Scholar 

  34. Froyland, G., Stancevic, O.: Metastability, Lyapunov exponents, escape rates, and topological entropy in random dynamical systems. Stoch. Dyn. 13(04), 1350004, 2013

    MathSciNet  MATH  Google Scholar 

  35. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108(3), 377–428, 1963

    MathSciNet  MATH  Google Scholar 

  36. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469, 1960

    MathSciNet  MATH  Google Scholar 

  37. González-Tokman, C., Quas, A.: A concise proof of the multiplicative ergodic theorem on Banach spaces. arXiv preprint arXiv:1406.1955, 2014.

  38. González-Tokman, C., Quas, A.: A semi-invertible operator Oseledets theorem. Ergodic Theory Dyn. Syst. 34(4), 1230–1272, 2014

    MathSciNet  MATH  Google Scholar 

  39. González-Tokman, C., Quas, A.: A concise proof of the multiplicative Ergodic theorem on Banach spaces. J. Mod. Dyn. 9(1), 237–255, 2015

    MathSciNet  MATH  Google Scholar 

  40. González-Tokman, C., Quas, A.: Stability and collapse of the Lyapunov spectrum for Perron–Frobenius operator cocycles. J. Eur. Math. Soc. 23(10), 3419–3457, 2021

    MathSciNet  MATH  Google Scholar 

  41. Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164(3), 993–1032, 2006

    MathSciNet  MATH  Google Scholar 

  42. I_Udovich, V.I.: The Linearization Method in Hydrodynamical Stability Theory. American Mathematical Society, 1989.

  43. Kaimanovich, V.A.: Lyapunov exponents, symmetric spaces, and a multiplicative ergodic theorem for semisimple lie groups. J. Sov. Math. 47(2), 2387–2398, 1989

    MathSciNet  MATH  Google Scholar 

  44. Karlsson, A., Margulis, G.A.: A multiplicative ergodic theorem and nonpositively curved spaces. Commun. Math. Phys. 208(1), 107–123, 1999

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, Berlin (2013)

    Google Scholar 

  46. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907, 1988

    MathSciNet  MATH  Google Scholar 

  47. Kifer, Y.: Ergodic Theory of Random Transformations, vol. 10. Springer, Berlin (2012)

    MATH  Google Scholar 

  48. Kryloff, N., Bogoliouboff, N.: La théorie générale de la mesure dans son application à l’étude des systèmes dynamiques de la mécanique non linéaire. Ann. Math., 65–113, 1937.

  49. Kuksin, S., Shirikyan, A.: Some limiting properties of randomly forced two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb. Sect. A Math. 133(4), 875–891, 2003

    MathSciNet  MATH  Google Scholar 

  50. Kuksin, S., Shirikyan, A.: Mathematics of Two-Dimensional Turbulence, vol. 194. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  51. Latini, M., Bernoff, A.J.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399–411, 2001

    ADS  MATH  Google Scholar 

  52. Lian, Z., Lu, K.: Lyapunov Exponents and Invariant Manifolds for Random Dynamical Systems in a Banach Space. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  53. Lin, Z., Thiffeault, J.-L., Doering, C.R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465–476, 2011

    ADS  MathSciNet  MATH  Google Scholar 

  54. Lu, K., Wang, Q., Young, L.-S.: Strange Attractors for Periodically Forced Parabolic Equations, vol. 224. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  55. Lundgren, T.: Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25(12), 2193–2203, 1982

    ADS  MATH  Google Scholar 

  56. MacKay, R.: An appraisal of the Ruelle–Takens route to turbulence. In The Global Geometry of Turbulence, 233–246. Springer, 1991.

  57. Mané, R.: Lyapounov exponents and stable manifolds for compact transformations. In Geometric dynamics, 522–577. Springer, 1983.

  58. Mathew, G., Mezić, I., Petzold, L.: A multiscale measure for mixing. Physica D 211(1–2), 23–46, 2005

    ADS  MathSciNet  MATH  Google Scholar 

  59. Mierczyński, J., Novo, S., Obaya, R.: Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Commun. Pure Appl. Anal. 19(4), 2235, 2020

    MathSciNet  MATH  Google Scholar 

  60. Miles, C.J., Doering, C.R.: Diffusion-limited mixing by incompressible flows. Nonlinearity 31(5), 2346, 2018

    ADS  MathSciNet  MATH  Google Scholar 

  61. Noethen, F.: Well-separating common complements for sequences of subspaces of the same codimension are generic in hilbert spaces. Anal. Math., pages 1–21, 2022.

  62. Oakley, B.W., Thiffeault, J.-L., Doering, C.R.: On mix-norms and the rate of decay of correlations. Nonlinearity 34(6), 3762, 2021

    MathSciNet  Google Scholar 

  63. Oseledets, V.I.: A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems. Trudy Moskovskogo Matematicheskogo Obshchestva 19, 179–210, 1968

    MathSciNet  Google Scholar 

  64. Pesin, Y., Climenhaga, V.: Open problems in the theory of non-uniform hyperbolicity. Discrete Contin. Dyn. Syst 27(2), 589–607, 2010

    MathSciNet  MATH  Google Scholar 

  65. Pesin, Y.B.: Characteristic lyapunov exponents and smooth ergodic theory. Uspekhi Matematicheskikh Nauk 32(4), 55–112, 1977

    MATH  Google Scholar 

  66. Raghunathan, M.S.: A proof of oseledec’s multiplicative ergodic theorem. Israel J. Math. 32(4), 356–362, 1979

    MathSciNet  MATH  Google Scholar 

  67. Rhines, P.B., Young, W.R.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145, 1983

    ADS  MATH  Google Scholar 

  68. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  69. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58, 1979

    MathSciNet  MATH  Google Scholar 

  70. Ruelle, D.: Characteristic exponents and invariant manifolds in hilbert space. Ann. Math., 243–290, 1982.

  71. Ruelle, D., Takens, F.: On the nature of turbulence. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25 12, 1–44, 1971

    MATH  Google Scholar 

  72. Schaumlöffel, K.-U., Flandoli, F.: A multiplicative ergodic theorem with applications to a first order stochastic hyperbolic equation in a bounded domain. Stoch. Int. J. Probab. Stoch. Processes 34(3–4), 241–255, 1991

    MathSciNet  MATH  Google Scholar 

  73. Schmid, P.J., Henningson, D.S., Jankowski, D.: Stability and transition in shear flows. Applied mathematical sciences, vol. 142. Appl. Mech. Rev. 55(3), B57–B59, 2002

    Google Scholar 

  74. Shaw, T.A., Thiffeault, J.-L., Doering, C.R.: Stirring up trouble: multi-scale mixing measures for steady scalar sources. Physica D 231(2), 143–164, 2007

    ADS  MathSciNet  MATH  Google Scholar 

  75. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    MATH  Google Scholar 

  76. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68. Springer, Berlin (2012)

    Google Scholar 

  77. Thieullen, P.: Fibrés dynamiques asymptotiquement compacts exposants de lyapounov. entropie. dimension. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, volume 4, pages 49–97. Elsevier, 1987.

  78. Van Sebille, E., England, M.H., Froyland, G.: Origin, dynamics and evolution of ocean garbage patches from observed surface drifters. Environ. Res. Lett. 7(4), 044040, 2012

    ADS  Google Scholar 

  79. Varzaneh, M.G., Riedel, S.: Oseledets splitting and invariant manifolds on fields of banach spaces. J. Dyn. Differ. Equ., pages 1–31, 2021.

  80. Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Number 151. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  81. Vukadinovic, J., Dedits, E., Poje, A.C., Schäfer, T.: Averaging and spectral properties for the 2d advection–diffusion equation in the semi-classical limit for vanishing diffusivity. Physica D 310, 1–18, 2015

    ADS  MathSciNet  MATH  Google Scholar 

  82. Walters, P.: A dynamical proof of the multiplicative ergodic theorem. Trans. Am. Math. Soc. 335(1), 245–257, 1993

    MathSciNet  MATH  Google Scholar 

  83. Walters, P.: An Introduction to Ergodic Theory, vol. 79. Springer, Berlin (2000)

    MATH  Google Scholar 

  84. Wilkinson, A.: What are Lyapunov exponents, and why are they interesting? Bull. Am. Math. Soc. 54(1), 79–105, 2017

    MathSciNet  MATH  Google Scholar 

  85. Wojtaszczyk, P.: Banach Spaces for Analysts. Number 25. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  86. Yaglom, A.M.: Hydrodynamic Instability and Transition to Turbulence, vol. 100. Springer, Berlin (2012)

    MATH  Google Scholar 

  87. Yamada, M., Ohkitani, K.: Lyapunov spectrum of a model of two-dimensional turbulence. Phys. Rev. Lett. 60(11), 983, 1988

    ADS  MathSciNet  Google Scholar 

  88. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108(5), 733–754, 2002

    MathSciNet  MATH  Google Scholar 

  89. Zelati, M.C., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation timescales and mixing rates. Commun. Pure Appl. Math. 73(6), 1205–1244, 2020

    MathSciNet  MATH  Google Scholar 

  90. Zlatoš, A.: Diffusion in fluid flow: dissipation enhancement by flows in 2d. Comm. Partial Differ. Equ. 35(3), 496–534, 2010

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AB was supported by National Science Foundation grant DMS-2009431. SPS was supported by National Science Foundation grant DMS-2205953. SPS is also grateful to the Institute for Advanced Study for their generous support and hospitality during 2021-2022 academic year when this paper was being written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Punshon-Smith.

Additional information

Communicated by V. Vicol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumenthal, A., Punshon-Smith, S. On the Norm Equivalence of Lyapunov Exponents for Regularizing Linear Evolution Equations. Arch Rational Mech Anal 247, 97 (2023). https://doi.org/10.1007/s00205-023-01928-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-023-01928-y

Navigation