Skip to main content
Log in

Porous Medium Equation with a Drift: Free Boundary Regularity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study regularity properties of the free boundary for solutions of the porous medium equation with the presence of drift. We show the \(C^{1,\alpha }\) regularity of the free boundary when the solution is directionally monotone in space variable in a local neighborhood. The main challenge lies in establishing a local non-degeneracy estimate (Theorem 1.3 and Proposition 1.5), which appears new even for the zero drift case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341, 1983

    Article  MathSciNet  Google Scholar 

  2. Aronson, D. G.; Bénilan, P.: Régularité des solutions de l’équation des milieux poreux dans rn. C. R. Acad. Sci. Paris Sér. 1 288(2), 103–105, 1979

  3. Benedetto, E.D.: Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. 130(1), 131–176, 1982

    Article  MathSciNet  Google Scholar 

  4. Benedetto, E.D.: Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32(1), 83–118, 1983

    Article  MathSciNet  Google Scholar 

  5. Bertozzi, A.L., Topaz, C.M., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601–1623, 2006

    Article  MathSciNet  Google Scholar 

  6. Bertsch, M., Hilhorst, D.: A density dependent diffusion equation in population dynamics: stabilization to equilibrium. SIAM J. Math. Anal. 17(4), 863–883, 1986

    Article  MathSciNet  Google Scholar 

  7. Bertsch, M., Gurtin, M.E., Hilhorst, D., Peletier, L.A.: On interacting populations that disperse to avoid crowding: the effect of a sedentary colony. J. Math. Biol. 19(1), 1–12, 1984

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L.A.; Wolanski, N.I.: \(C^{1,\alpha }\) regularity of the free boundary for the \(n\)-dimensional porous media equation. Commun. Pure Appl. Math. 43(7), 885–902, 1990

  9. Caffarelli, L.A., Friedman, A.: Regularity of the free boundary of a gas flow in an \(n\)-dimensional porous medium. Indiana Univ. Math. J. 29(3), 361–391, 1980

    Article  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Wolanski, N.I.: \(C^{1,\alpha }\) regularity of the free boundary for the \(n\)-dimensional porous media equation. Commun. Pure Appl. Math. 43(7), 885–902, 1990

    Article  Google Scholar 

  11. Caffarelli, L.A., Vázquez, J.L., Wolanski, N.I.: Lipschitz continuity of solutions and interfaces of the \(n\)-dimensional porous medium equation. Indiana Univ. Math. J. 36(2), 373–401, 1987

    Article  MathSciNet  Google Scholar 

  12. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133(1), 1–82, 2001

    Article  MathSciNet  Google Scholar 

  13. Choi, S., Jerison, D., Kim, I.C.: Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface. Am. J. Math. 129(2), 527–582, 2007

    Article  MathSciNet  Google Scholar 

  14. Huppert, H.E., Woods, A.W.: Gravity-Driven Flows in Porous Layers, vol. 292. Cambridge University Press, Cambridge 1995

    MATH  Google Scholar 

  15. Hwang, S., Zhang, Y.P.: Continuity results for degenerate diffusion equations with \( L^{p}_t L^{q}_{x} \) drifts. Nonlinear Anal. 211, 2021

    Article  Google Scholar 

  16. Kienzler, C.: Flat fronts and stability for the porous medium equation. Commun. Partial Differ. Equ. 41(12), 1793–1838, 2016

    Article  MathSciNet  Google Scholar 

  17. Kienzler, C., Koch, H., Vázquez, J.L.: Flatness implies smoothness for solutions of the porous medium equation. Calc. Var. Partial Differ. Equ. 57(1), 18, 2018

    Article  MathSciNet  Google Scholar 

  18. Kim, I.C., Lei, H.K.: Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete Contin. Dyn. Syst. 27(2), 767–786, 2010

    Article  MathSciNet  Google Scholar 

  19. Kim, I.C., Zhang, Y.P.: Regularity properties of degenerate diffusion equations with drifts. SIAM J. Math. Anal. 50(4), 4371–4406, 2018

    Article  MathSciNet  Google Scholar 

  20. Kim, I., Požár, N., Woodhouse, B.: Singular limit of the porous medium equation with a drift. Adv. Math. 349, 682–732, 2019

    Article  MathSciNet  Google Scholar 

  21. Monsaingeon, L.: Numerical investigation of the free boundary regularity for a degenerate advection–diffusion problem. Interfaces Free Bound. 19(3), 371–391, 2017

  22. Monsaingeon, L.: Numerical investigation of the free boundary regularity for a degenerate advection-diffusion problem. Interfaces Free Bound. 19(3), 371–391, 2017

    Article  MathSciNet  Google Scholar 

  23. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford 2007

    MATH  Google Scholar 

  24. Witelski, T.P.: Segregation and mixing in degenerate diffusion in population dynamics. J. Math. Biol. 35(6), 695–712, 1997

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors are partially supported by NSF Grant DMS-1566578. We would like to thank Jean-Michel Roquejoffre and Yao Yao for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Paul Zhang.

Additional information

Communicated by I. Fonseca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.6

Let us only consider the case when \(U={\mathbb {R}}^d\). The case of \(U=B_1\) follows similarly.

Fix one non-negative \(\phi \in C_c^\infty ({\mathbb {R}}^d\times [0,T))\). Denote

$$\begin{aligned} U_0:=\{\phi>0\}\cap \{\psi >0\}. \end{aligned}$$

For any \(\varepsilon >0\), take finitely many space time balls \(U_i, i=1,\ldots ,n\) such that

  1. 1.

    for each \( i\geqq 1\), \(|U_i|\leqq \varepsilon ^{d+1}\) and \(U_i\) is in the \(\varepsilon \)-neighbourhood of \(\Gamma (\psi )\),

  2. 2.

    \(\{ U_i\}_{i=1,\ldots ,n}\) is an open cover of \(\Gamma (\psi ) \cap \{\phi >0\}.\)

Since \(\Gamma (\psi )\) is of dimension d, we can assume

$$\begin{aligned} n\lesssim \varepsilon ^{-d}. \end{aligned}$$
(A.1)

Take a partition of unity \(\{\rho _i, i=0,\ldots ,n\}\) which is subordinate to the open cover \(\{U_i\}_{i\geqq 0}\). Then for \(i\geqq 1\),

$$\begin{aligned} |\nabla \rho _i|+|\partial _t\rho _i|\lesssim 1/\varepsilon . \end{aligned}$$
(A.2)

By the assumption, \(\psi \) is a supersolution in the interior of its positive set. And since \(\varepsilon \) can be arbitrarily small, to show (2.4) we only need to show

$$\begin{aligned} I_\varepsilon :=\sum _{i=1}^{n(\varepsilon )}\left( \int _0^T\int _{{\mathbb {R}}^d} \psi \,(\phi \rho _i)_t-(\nabla \psi ^m+\psi \,\vec {b})\nabla (\phi \rho _i)\;\mathrm{d}x\mathrm{d}t - \int _{{\mathbb {R}}^d} \psi (0,x)\phi (0,x)\rho _i\mathrm{d}x\right) \rightarrow 0 \end{aligned}$$

as \(\varepsilon \rightarrow 0\).

By property 1 of \(U_i\) and the regularity assumption on \(\psi \), in all \(U_i, i\geqq 1\) we have

$$\begin{aligned} \psi \leqq C\varepsilon ^{\frac{1}{\alpha }},\quad |\nabla \psi ^m|\leqq C\psi ^{m-\alpha }|\nabla \psi ^\alpha |\leqq C\varepsilon ^{\frac{m-\alpha }{\alpha }}. \end{aligned}$$

Now from (A.1), (A.2) and \(\alpha <m\), it follows that

$$\begin{aligned} |I_\varepsilon |&\leqq C\varepsilon ^{-d}\left( \iint _{U_i} \frac{1}{\varepsilon } (\psi +|\nabla \psi ^m|) \;\mathrm{d}x\mathrm{d}t +\int _{U_i\cap \{t=0\}} \psi (0,x)\mathrm{d}x\right) \\&\leqq C(\varepsilon ^{\frac{1}{\alpha }}+\varepsilon ^{\frac{m-\alpha }{\alpha }}+\varepsilon ) \end{aligned}$$

which indeed converges to 0 as \(\varepsilon \rightarrow 0\).

Appendix B: Sketch of the proof of Lemma 5.3

We follow the idea of Lemma 9 [8] and compute

$$\begin{aligned} \Delta f(0)={\overline{\lim }}_{r\rightarrow 0}\left( \oint _{B_r}f(x)-f(0)\mathrm{d}x\right) . \end{aligned}$$

Without loss of generality, suppose locally near the origin that

$$\begin{aligned} f(x)=\inf _{|\nu |=1}h\left( x+\psi (x)\nu \right) , \end{aligned}$$

because otherwise \(\Delta f(0)=0\). Choosing an appropriate system of coordinates, we can have

$$\begin{aligned}&f(0)=h(\psi (0)e_n);\\&\nabla \psi (0)=\alpha e_1+\beta e_n. \end{aligned}$$

We will evaluate f(x) by above by choosing \(\nu (x)=\frac{\nu _*(x)}{|\nu _*(x)|}\) where

$$\begin{aligned} \nu _*(x):=e_n+\frac{\beta x_1-\alpha x_n}{\psi (0)}e_1 +\frac{\gamma }{\psi (0)}\left( \Sigma _{i=2}^{d-1}\,x_i\,e_i\right) \end{aligned}$$

where \(\gamma \) satisfies

$$\begin{aligned} (1+\gamma )^2=(1+\beta )^2+\alpha ^2. \end{aligned}$$

With this choice of \(\nu \), we define \(y:=x+\psi (x)\nu (x)\) and so \(y(0)=\psi (0)e_n\). After direct computations (also see [8]), we can write

$$\begin{aligned} y=Y_*(x)+\psi (0)e_n+o(|x|^2) \end{aligned}$$

such that the first-order term, except the translation \(\varphi (0)e_n\), satisfies

$$\begin{aligned} Y_*(x):=x+(\alpha x_1+\beta x_n)e_n+(\beta x_1-\alpha )e_1+\gamma \Sigma _{i=1}^d x_ie_i. \end{aligned}$$

Hence \(Y_*(x)\) is a rigid rotation plus a dilation and we have

$$\begin{aligned} \left| \frac{D (Y_*-x)}{Dx}\right| \leqq \sigma \Vert \nabla \psi \Vert _\infty . \end{aligned}$$
(B.1)

Then

$$\begin{aligned} \oint _{B_r}f(x)-f(0)\mathrm{d}x&\leqq \oint _{B_r}h(y(x))-h(y(0))\mathrm{d}x\\&\leqq \oint _{B_r}h(y(x))\\&\quad -h(Y_*(x)+y(0))\mathrm{d}x+ \oint _{B_r}h(Y_*(x)+y(0))-h(y(0))\mathrm{d}x. \end{aligned}$$

By the condition on \(\psi \) and the computations done in Lemma 9 [8], the first term is non-positive.

Since h is smooth, the second term converges to

$$\begin{aligned} \left( \left| \frac{D Y_*}{D x}\right| _{x=0}\right) ^2(\Delta h)(y(0))\quad \text { as }r \rightarrow 0. \end{aligned}$$

Now, using (B.1) and the assumption that \(\Delta h\geqq -C\) and \(\Vert \nabla \psi \Vert _\infty \leqq 1\), we get

$$\begin{aligned} \oint _{B_r}f(x)-f(0)\mathrm{d}x&\leqq \oint _{B_r}h(Y_*(x)+y(0))-h(y(0))\mathrm{d}x\\&\leqq (1+\sigma \Vert \nabla \psi \Vert _\infty )(\Delta h) (y(0))+\sigma \Vert \nabla \psi \Vert _\infty C. \end{aligned}$$

Thus we have finished the proof.

Appendix C: Proof of Lemma 5.4

Let us suppose \(x=0\) and \(f(0)=h(y)\) for a unique y. We only compute \(\partial _1 f(0)=\partial _{x_1}f(0)\). If \(\nabla h(y)=0\), it is not hard to see

$$\begin{aligned} \partial _1 f(0)=\partial _1 h(y)=0. \end{aligned}$$

Next suppose \(\nabla h(y)\ne 0\). We know that h obtains its minimum over \(B(0,\psi (0))\) at point \(y\in \partial B(0,{\psi (0)})\). Let us assume

$$\begin{aligned} y=(y_1,y_2,0,\ldots ,0),\quad \text { and thus }|y_1|^2+|y_2|^2=(\psi (0))^2. \end{aligned}$$

For smooth h, it is not hard to see that

$$\begin{aligned} \nabla h(y)=-k y\quad \text {with }k=\frac{|\nabla h|}{\psi (0)}. \end{aligned}$$

Near point y

$$\begin{aligned} h(x)-h(y)=-ky_1(x_1-y_1)-ky_2(x_2-y_2)+o(|x-y|). \end{aligned}$$

To estimate \(w((\delta ,0,\ldots ,0))\), consider the leading terms:

$$\begin{aligned}&A(\delta ):=-ky_1(x_1-y_1)-ky_2(x_2-y_2)\\&=-ky_1(x_1-\delta )-ky_2x_2+ky^2_1 +ky^2_2-ky_1\delta . \end{aligned}$$

By a standard argument, under the constrain

$$\begin{aligned} |x_1-\delta |^2+|x_2|^2+|x_3|^2+\cdots +|x_n|^2\leqq \psi (\delta ,0,\ldots ,0)^2, \end{aligned}$$

\(A(\delta )\) achieves its minimum at

$$\begin{aligned} x_1=y_1\psi (\delta ,0,\ldots ,0)/(y^2_1+y^2_2)^{\frac{1}{2}}+\delta ,\,x_2 =y_2\psi (\delta ,0, \ldots ,0)/(y^2_1+y^2_2)^{\frac{1}{2}} \end{aligned}$$

with value

$$\begin{aligned}&-k\psi (\delta ,0, \ldots ,0)(y^2_1+y^2_2)^{\frac{1}{2}}+ky^2_1+ky^2_2-ky_1\delta \\&=-k\psi (\delta ,0, \ldots ,0)\psi (0)+k\psi (0)^2-ky_1\delta . \end{aligned}$$

Thus

$$\begin{aligned} \partial _1 f(0)=\lim _{\delta \rightarrow 0}A(\delta )/\delta =-k\psi (0)\,\partial _1 \psi (0)-ky_1. \end{aligned}$$

Notice that \(\partial _1 h(y)=-ky_1\). So we find

$$\begin{aligned} \partial _1 f(0)-\partial _1 h(y)=-k\psi (0)\,\partial _1 \psi (0) =-|\nabla h|\,\partial _1 \psi (0). \end{aligned}$$

This leads to the conclusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Zhang, Y.P. Porous Medium Equation with a Drift: Free Boundary Regularity. Arch Rational Mech Anal 242, 1177–1228 (2021). https://doi.org/10.1007/s00205-021-01702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-021-01702-y

Navigation