Skip to main content
Log in

Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a new symmetrization by choosing appropriate functions as primary unknowns. A necessary and sufficient condition for the weakly linear stability of relativistic vortex sheets is obtained by analyzing the roots of the Lopatinskiĭ determinant associated to the constant coefficient linearized problem. Under this stability condition, we show that the variable coefficient linearized problem obeys an energy estimate with a loss of derivatives. The construction of certain weight functions plays a crucial role in absorbing the error terms caused by microlocalization. Based on the weakly linear stability result, we establish the existence and nonlinear stability of relativistic vortex sheets under small initial perturbations by a Nash–Moser iteration scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Eqs. 14, 173–230 (1989). https://doi.org/10.1080/03605308908820595

    Article  MATH  Google Scholar 

  2. Anile, A.M.: Relativistic Fluids and Magneto-fluids, with Application in Astrophysics and Plasma Physics. Cambridge University Press, Cambridge, 1990. https://doi.org/10.1017/CBO9780511564130

  3. Artola, M., Majda, A.J.: Nonlinear development of instabilities in supersonic vortex sheets: I. The basic kink modes. Phys. D 28, 253–281 (1987). https://doi.org/10.1016/0167-2789(87)90019-4

    MATH  Google Scholar 

  4. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications. Oxford University Press, Oxford, 2007. https://doi.org/10.1093/acprof:oso/9780199211234.001.0001

  5. Catania, D., D'Abbicco, M., Secchi, P.: Weak stability of the plasma-vacuum interface problem. J. Differ. Equ. 261, 3169–3219 (2016). https://doi.org/10.1016/j.jde.2016.05.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chazarain, J., Piriou, A.: Introduction to the Theory of Linear Partial Differential Equations. North-Holland Publishing Co., New York (1982)

    MATH  Google Scholar 

  7. Chen, G.-Q., Feldman, M.: The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures. Princeton University Press, Princeton (2018)

    Book  MATH  Google Scholar 

  8. Chen, G.-Q., Wang, Y.-G.: Existence and stability of compressible current-vortex sheets in three-dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187, 369–408 (2008). https://doi.org/10.1007/s00205-007-0070-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.-Q., Wang, Y.-G.: Characteristic discontinuities and free boundary problems for hyperbolic conservation laws. In: Holden, H., Karlsen, K.H. (eds.) Nonlinear Partial Differential Equations, pp. 53–81. Springer, Heidelberg, 2012. https://doi.org/10.1007/978-3-642-25361-4

  10. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in two-dimensional elastodynamics. Adv. Math. 311, 18–60 (2017). https://doi.org/10.1016/j.aim.2017.02.014

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, R.M., Hu, J., Wang, D.: Linear stability of compressible vortex sheets in 2d elastodynamics: variable coefficients, 2018. arXiv:1804.07850, https://arxiv.org/abs/1804.07850

  12. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. European Mathematical Society (EMS), Zürich, 2007. https://doi.org/10.4171/031

  13. Christodoulou, D.: The Shock Development Problem. European Mathematical Society (EMS), Zürich, 2018. https://arxiv.org/abs/1705.00828

  14. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford, 2009. https://doi.org/10.1093/acprof:oso/9780199230723.001.0001

  15. Coulombel, J.-F.: Weakly stable multidimensional shocks. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 401–443, 2004. https://doi.org/10.1016/j.anihpc.2003.04.001

  16. Coulombel, J.-F.: Well-posedness of hyperbolic initial boundary value problems. J. Math. Pures Appl. 9(84), 786–818 (2005). https://doi.org/10.1016/j.matpur.2004.10.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Coulombel, J.-F., Secchi, P.: The stability of compressible vortex sheets in two space dimensions. Indiana Univ. Math. J. 53, 941–1012 (2004). https://doi.org/10.1512/iumj.2004.53.2526

    Article  MathSciNet  MATH  Google Scholar 

  18. Coulombel, J.-F., Secchi, P.: On the transition to instability for compressible vortex sheets. Proc. R. Soc. Edinb. Sect. A 134, 885–892 (2004). https://doi.org/10.1017/S0308210500003528

    Article  MathSciNet  MATH  Google Scholar 

  19. Coulombel, J.-F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Ann. Sci. Éc. Norm. Supér. (4) 41, 85–139,2008. https://eudml.org/doc/272142

  20. Coulombel, J.-F., Secchi, P.: Uniqueness of 2-d compressible vortex sheets. Commun. Pure Appl. Anal. 8, 1439–1450 (2009). https://doi.org/10.3934/cpaa.2009.8.1439

    Article  MathSciNet  MATH  Google Scholar 

  21. Fejer, J.A., Miles, J.W.: On the stability of a plane vortex sheet with respect to three-dimensional disturbances. J. Fluid Mech. 15, 335–336 (1963). https://doi.org/10.1017/S002211206300029X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Francheteau, J., Métivier, G.: Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels, vol. 268. Astérisque, Paries (2000)

    MATH  Google Scholar 

  23. Godunov, S.K.: An interesting class of quasi-linear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  24. Hörmander, L.: The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62, 1–52 (1976). https://doi.org/10.1007/BF00251855

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, F., Wang, D., Yuan, D.: Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow, 2018. arXiv:1808.05905, https://arxiv.org/abs/1808.05905

  26. Jang, J., LeFloch, P.G., Masmoudi, N.: Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum. J. Differ. Eqs. 260, 5481–5509 (2016). https://doi.org/10.1016/j.jde.2015.12.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298 (1970). https://doi.org/10.1002/cpa.3160230304

    Article  MathSciNet  MATH  Google Scholar 

  28. Lax, P.D.: Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957). https://doi.org/10.1002/cpa.3160100406

    Article  MATH  Google Scholar 

  29. Lax, P.D., Phillips, R.S.: Local boundary conditions for dissipative symmetric linear differential operators. Commun. Pure Appl. Math. 13, 427–455 (1960). https://doi.org/10.1002/cpa.3160130307

    Article  MathSciNet  MATH  Google Scholar 

  30. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics. WA Benjamin, New York (1967)

    MATH  Google Scholar 

  31. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. II. Springer, New York-Heidelberg (1972)

    Book  MATH  Google Scholar 

  32. Majda, A., Osher, S.: Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary. Commun. Pure Appl. Math. 28, 607–675 (1975). https://doi.org/10.1002/cpa.3160280504

    Article  MathSciNet  MATH  Google Scholar 

  33. Makino, T., Ukai, S.: Local smooth solutions of the relativistic Euler equation, II. Kodai Math. J. 18, 365–375, 1995. https://projecteuclid.org/euclid.kmj/1138043432

  34. Métivier, G.: Stability of multidimensional shocks. In: Freistühler, H., Szepessy, A. (eds.) Advances in the Theory of Shock Waves, pp. 25–103. Birkhäuser Boston, Boston, 2001. https://doi.org/10.1007/978-1-4612-0193-9

  35. Métivier, G., Zumbrun, K.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175 (826), 2005. https://doi.org/10.1090/memo/0826

  36. Miles, J.W.: On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4, 538–552 (1958). https://doi.org/10.1017/S0022112058000653

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Mishkov, R.L.: Generalization of the formula of Faa di Bruno for a composite function with a vector argument. Int. J. Math. Math. Sci. 24, 481–491 (2000). https://doi.org/10.1155/S0161171200002970

    Article  MathSciNet  MATH  Google Scholar 

  38. Morando, A., Trebeschi, P.: Two-dimensional vortex sheets for the nonisentropic Euler equations: linear stability. J. Hyper. Differ. Eqs. 5, 487–518 (2008). https://doi.org/10.1142/S021989160800157X

    Article  MathSciNet  MATH  Google Scholar 

  39. Morando, A., Trakhinin, Y., Trebeschi, P.: Local existence of MHD contact discontinuities. Arch. Ration. Mech. Anal. 228, 691–742 (2018). https://doi.org/10.1007/s00205-017-1203-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Pan, R., Smoller, J.A.: Blowup of smooth solutions for relativistic Euler equations. Commun. Math. Phys. 262, 729–755 (2006). https://doi.org/10.1007/s00220-005-1464-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Rauch, J.B., Massey III, F.J.: Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Am. Math. Soc. 189, 303–318 (1974). https://doi.org/10.1090/S0002-9947-1974-0340832-0

    MathSciNet  MATH  Google Scholar 

  42. Ruan, L., Wang, D., Weng, S., Zhu, C.: Rectilinear vortex sheets of inviscid liquid-gas two-phase flow: linear stability. Commun. Math. Sci. 14, 735–776 (2016). https://doi.org/10.4310/CMS.2016.v14.n3.a7

    Article  MathSciNet  MATH  Google Scholar 

  43. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 134, 155–197 (1996). https://doi.org/10.1007/BF00379552

    Article  MathSciNet  MATH  Google Scholar 

  44. Secchi, P., Trakhinin, Y.: Well-posedness of the plasma-vacuum interface problem. Nonlinearity 27, 105–169 (2014). https://doi.org/10.1088/0951-7715/27/1/105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Smoller J., Temple, B.: Global solutions of the relativistic Euler equations. Commun. Math. Phys. 156, 67–99, 1993. http://projecteuclid.org/euclid.cmp/1104253517

  46. Taub, A.H.: On circulation in relativistic hydrodynamics. Arch. Ration. Mech. Anal. 3, 312–324 (1959). https://doi.org/10.1007/BF00284183

    Article  MathSciNet  MATH  Google Scholar 

  47. Trakhinin, Y.: The existence of current-vortex sheets in ideal compressible magnetohydrodynamics. Arch. Ration. Mech. Anal. 191, 245–310 (2009). https://doi.org/10.1007/s00205-008-0124-6

    Article  MathSciNet  MATH  Google Scholar 

  48. Trakhinin, Y.: Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1551–1594 (2009). https://doi.org/10.1002/cpa.20282

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Y.-G., Yu, F.: Stabilization effect of magnetic fields on two-dimensional compressible current-vortex sheets. Arch. Ration. Mech. Anal. 208, 341–389 (2013). https://doi.org/10.1007/s00205-012-0601-9

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, Y.-G., Yu, F.: Stability of contact discontinuities in three-dimensional compressible steady flows. J. Differ. Equ. 255, 1278–1356 (2013). https://doi.org/10.1016/j.jde.2013.05.014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Wang, Y.-G., Yu, F.: Structural stability of supersonic contact discontinuities in three-dimensional compressible steady flows. SIAM J. Math. Anal. 47, 1291–1329 (2015). https://doi.org/10.1137/140976169

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, Y.-G., Yuan, H.: Weak stability of transonic contact discontinuities in three-dimensional steady non-isentropic compressible Euler flows. Z. Angew. Math. Phys. 66, 341–388 (2015). https://doi.org/10.1007/s00033-014-0404-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of Gui-Qiang G. Chen was supported in part by the UK Engineering and Physical Sciences Research Council Award EP/E035027/1 and EP/L015811/1, and the Royal Society–Wolfson Research Merit Award (UK). The research of Paolo Secchi was supported in part by the Italian research projects PRIN 2012L5WXHJ-004 and PRIN 2015YCJY3A-004. The research of Tao Wang was supported in part by NSFC Grants #11601398 and #11731008, and the Italian research project PRIN 2012L5WXHJ-004. Tao Wang warmly thanks Prof. Alessandro Morando, Prof. Paolo Secchi, and Prof. Paola Trebeschi for support and hospitality during his postdoctoral stay at University of Brescia, and also expresses much gratitude to Prof. Huijiang Zhao for his continuous encouragement and constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, GQ.G., Secchi, P. & Wang, T. Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime. Arch Rational Mech Anal 232, 591–695 (2019). https://doi.org/10.1007/s00205-018-1330-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1330-5

Navigation