Skip to main content
Log in

On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article studies the Cauchy problem for the Boltzmann equation with stochastic kinetic transport. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (in the sense of DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. This study includes a criterion for renormalization, the weak closedness of the solution set, and tightness of velocity averages in \({{L}^{1}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandre R., Villani C.: On the Boltzmann equation for long-range interactions. Commun. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkeryd L.: Loeb solutions of the Boltzmann equation. Arch. Ration. Mech. Anal., 86(1), 85–97 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkeryd L., Esposito R., Marra R., Nouri A.: Stability for Rayleigh–Benard convective solutions of the Boltzmann equation. Arch. Ratio. Mech. Anal. 198(1), 125–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asano K.: On the global solutions of the initial boundary value problem for the Boltzmann equation with an external force. Transp. Theory Stat. Phys. 16(4-6), 735–761 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bailleul, I., Gubinelli, M.: Unbounded rough drivers. arXiv preprint arXiv:1501.02074, 2015

  6. Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1-2), 323–344 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bellomo N., Lachowicz M., Palczewski A., Toscani G.: On the initial value problem for the Boltzmann equation with a force term. Transp. Theory Stat. Phys. 18(1), 87–102 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bixon M., Zwanzig R.: Boltzmann–Langevin equation and hydrodynamic fluctuations. Phys. Rev., 187(1), 267 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bouchut F., Desvillettes L.: Averaging lemmas without time Fourier transform and application to discretized kinetic equations. Proc. R. Soc. Edinb. Sect. A Math. 129(01), 19–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bris C.L., Lions P.-L.: Existence and uniqueness of solutions to Fokker–Planck type equations with irregular coefficients. Commun. Partial Differ. Equ., 33(7), 1272–1317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brzeźniak Z., Flandoli F., Maurelli M.: Existence and uniqueness for stochastic 2d Euler flows with bounded vorticity. Arch. Ration. Mech. Anal. 221(1), 107–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cercignani C.: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences. Springer, New York (1988)

    Book  MATH  Google Scholar 

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, Vol. 106. Springer Science & Business Media, 2013

  14. Coghi, M., Flandoli, F.: Propagation of chaos for interacting particles subject to environmental noise. Ann. Appl. Probab. 26(3), 1407–1442, 2016. https://doi.org/10.1214/15-AAP1120

  15. Debussche A., Vovelle J.: Invariant measure of scalar first-order conservation laws with stochastic forcing. Probab. Theory Relat. Fields 163(3-4), 575–611 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delarue F., Flandoli F., Vincenzi D.: Noise prevents collapse of vlasov-poisson point charges. Commun. Pure Appl. Math. 67(10), 1700–1736 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 321-366 1989

  18. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Duan R., Yang T., Zhu C.: L1 and BV-type stability of the Boltzmann equation with external forces. J. Differ. Equ. 227(1), 1–28 (2006)

    Article  ADS  MATH  Google Scholar 

  20. Esposito R., Marra R., Lebowitz J.: Solutions to the Boltzmann equation in the Boussinesq regime. J. Stat. Phys. 90(5-6), 1129–1178 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fedrizzi, E., Flandoli, F., Priola, E., Vovelle, J.: Regularity of stochastic kinetic equations. arXiv preprint arXiv:1606.01088, 2016

  22. Flandoli F.: The interaction between noise and transport mechanisms in pdes.Milan J. Math. 79(2), 543–560 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Flandoli F., Gubinelli M., Priola E.: Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180(1), 1–53 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Fox R.F., Uhlenbeck G.E.: Contributions to nonequilibrium thermodynamics. ii. fluctuation theory for the Boltzmann equation. Phys. Fluids (1958-1988) 13(12), 2881–2890 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: hard spheres and short-range potentials. European Mathematical Society 2013

  26. Gess, B., Souganidis, P.E.: Long-time behavior, invariant measures and regularizing effects for stochastic scalar conservation laws. Commun. Pure Appl.Math. 70(8), 1562–1597, 2017. https://doi.org/10.1002/cpa.21646

  27. Golse F., Lions P.-L., Perthame B., Sentis R.: Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1), 110–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Golse F., Saint-Raymond L.: Velocity averaging in L1 for the transport equation.. Comptes Rendus Math. 334(7), 557–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golse F., Saint-Raymond L.: Hydrodynamic limits for the Boltzmann equation. Riv. Mat. Univ. Parma 4, 1–144 (2005)

    MATH  Google Scholar 

  30. Jabin P.-E., Vega L.: A real space method for averaging lemmas. J. Math. Pures Appl., 83(11), 1309–1351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jakubowski A.: The almost sure Skorokhod representation for subsequences in non metric spaces. Teor. Veroyatnost. i Primenen. 42(1), 209–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunita, H., Stochastic flows and stochastic differential equations, Vol. 24, Cambridge university press, 1997

  33. Landau, L., Lifshitz, E.: Fluid mechanics, 1959. Course of Theoretical Physics,

  34. Lions P.L.: Compactness in Boltzmann's equation via Fourier integral operators and applications. III. J. Math. Kyoto Univ. 34(3), 539–584 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions P.-L., Perthame B., Souganidis P.E.: Stochastic averaging lemmas for kinetic equations. Séminaire Laurent Schwartz-EDP et applications 2011(2012), 1–17 (2011)

    MATH  Google Scholar 

  36. Martina, H.: A Bhatnagar-Gross-Krook approximation to stochastic scalar conserva tion laws. Annales de L Institut Henri Poincare-Probabilites Et Statistiques, Vol. 51, pp. 4 2015

  37. Montroll, E.: Fluctuation phenomena, Vol. 7. Elsevier, 2012

  38. Musial K.: Pettis integral. Handbook of measure theory, 1, 531–586 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Pardoux É.: Equations aux dérivées partielles stochastiques non lineaires monotones: Etude de solutions fortes de type Ito. PhD thesis, 1975

  40. Saint-Raymond L.: Hydrodynamic Limits of the Boltzmann Equation, Lecture Notes in Mathematics, Vol. 1971. Springer-Verlag, Berlin (2009)

    Google Scholar 

  41. Spohn H.: Fluctuations around the Boltzman equation. J. Stat. Phys. 26(2), 285–305 (1981)

    Article  ADS  Google Scholar 

  42. Spohn H.: Fluctuation theory for the Boltzmann equation. Nonequilibrium Phenomena I: The Boltzmann Equation, 1, 225–251 (1983)

    ADS  MathSciNet  Google Scholar 

  43. Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer Science & Business Media, 2012

  44. Ueyama H.: The stochastic Boltzmann equation and hydrodynamic fluctuations. J. Stat. Phys. 22(1), 1–26 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ukai S., Yang T., Zhao H.: Global solutions to theBoltzmann equationwith external forces. Anal. Appl. 3(02), 157–193 (2005)

    Article  MathSciNet  Google Scholar 

  46. Van Der Vaart, A.W., Wellner, J.A.: Weak Convergence. Springer, 1996

  47. Villani C.: A review of mathematical topics in collisional kinetic theory. Handbook of Mathematical Fluid Dynamics, 1, 71–305 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Punshon-Smith.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punshon-Smith, S., Smith, S. On the Boltzmann Equation with Stochastic Kinetic Transport: Global Existence of Renormalized Martingale Solutions. Arch Rational Mech Anal 229, 627–708 (2018). https://doi.org/10.1007/s00205-018-1225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-018-1225-5

Navigation