Skip to main content
Log in

Mixed Normal-Superconducting States in the Presence of Strong Electric Currents

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the Ginzburg–Landau equations in the presence of large electric currents that are smaller than the critical current where the normal state loses its stability. For steady-state solutions in the large \({\kappa}\) limit, we prove that the superconductivity order parameter is exponentially small in a significant part of the domain, and simply small in the rest of it. Similar results are obtained for the time-dependent problem, in continuation of the paper by the two first authors [3]. We conclude by obtaining some weaker results, albeit similar, for steady-state solutions in the large domain limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Lectures on Elliptic Boundary Value Problems, Prepared for Publication by B. Frank Jones, Jr. with the Assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, vol. 2. D. Van Nostrand Co., Inc., Princeton, 1965

  2. Almog Y.: Non-linear surface superconductivity for type II superconductors in the large domain limit. Arch. Rat. Mech. Anal. 165, 271–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almog Y., Helffer B.: Global stability of the normal state of superconductors in the presence of a strong electric current. Commun. Math. Phys. 330, 1021–1094 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Attar K.: The ground state energy of the two dimensional Ginzburg–Landau functional with variable magnetic field. Annales de l’Institut Henri Poincaré Non Linear Analysis 32, 325–345 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Avron Y., Herbst I., Simon B.: Schrödinger operators with magnetic fields I. Duke Math. J. 45, 847–883 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnaillie V.: On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41(3–4), 215–258 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Bonnaillie-Noël V., Dauge M.: Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners. Ann. Henri Poincaré 7, 899–931 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Byun S.-S.: Optimal W 1,p regularity theory for parabolic equations in divergence form. J. Evol. Equ. 7, 415–428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dauge, M.: Personal communication (2014)

  10. Du Q., Wei J., Zhao C.: Vortex solutions of the high-\({\kappa}\) high-field Ginzburg–Landau model with an applied current. SIAM J. Math. Anal. 42, 2368–2401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du Q., Gunzburger M.D., Peterson J.S.: Analysis and approximation of the Ginzburg–Landau model of superconductivity. SIAM Rev. 34(1), 54–81 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feireisl E., Takáč P.: Long-time stabilization of solutions to the Ginzburg–Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fournais S., Helffer B.: Spectral Methods in Surface Superconductivity. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. 2nd ed. Springer, Berlin, 1983

  15. Giaquinta, M., Martinazzi, L.: An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. In: Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 11, 2nd ed. Edizioni della Normale, Pisa, 2012

  16. Gorkov L., Eliashberg G.: Generalization of the Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334 (1968)

    ADS  Google Scholar 

  17. Hari L.P., Rubinstein J., Sternberg P.: Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field. Phys. D Nonlinear Phenom. 261, 31–41 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Helffer B., Kachmar A.: The Ginzburg–Landau functional with vanishing magnetic field. Arch. Rat. Mech. Anal. 218, 1–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helffer B., Mohamed A.: Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal. 138, 40–81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin F.H., Du Q.: Ginzburg–Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28, 1265–1293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13(3), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  22. Poole C.P.J., Farach H.A., Creswick R.J.: Handbook of Superconductivity. Academic Press, New York (1999)

    Google Scholar 

  23. Saint-James D., de Gennes P.: Onset of superconductivity in decreasing fields. Phys. Let. 7, 306–308 (1963)

    Article  ADS  Google Scholar 

  24. Sandier E., Serfaty S.: The decrease of bulk-superconductivity near the second critical field in the Ginzburg–Landau model. SIAM J. Math. Anal. 34, 939–956 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tice I.: Ginzburg-Landau vortex dynamics driven by an applied boundary current. Commun. Pure Appl. Math. 63, 1622–1676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Almog.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almog, Y., Helffer, B. & Pan, XB. Mixed Normal-Superconducting States in the Presence of Strong Electric Currents. Arch Rational Mech Anal 223, 419–462 (2017). https://doi.org/10.1007/s00205-016-1037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-016-1037-4

Navigation