Skip to main content
Log in

Ground and Bound State Solutions of Semilinear Time-Harmonic Maxwell Equations in a Bounded Domain

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We find solutions \({E : \Omega \to \mathbb{R}^3}\) of the problem

$$\left\{\begin{aligned}&\nabla \times(\nabla \times E) + \lambda E = \partial_E F(x, E) &&\quad \text{in }\quad \Omega \\& \nu \times E = 0 &&\quad \text{on }\quad \partial \Omega \end{aligned} \right.$$

on a simply connected, smooth, bounded domain \({\Omega \subset \mathbb{R}^3}\) with connected boundary and exterior normal \({\nu : \partial \Omega \to \mathbb{R}^3}\). Here \({\nabla \times}\) denotes the curl operator in \({\mathbb{R}^3}\), the nonlinearity \({F : \Omega \times \mathbb{R}^3 \to \mathbb{R}}\) is superquadratic and subcritical in E. The model nonlinearity is of the form \({F(x, E)=\Gamma(x) |E|^p}\) for \({\Gamma \in L^\infty(\Omega)}\) positive, some 2 < p < 6. It need not be radial nor even in the E-variable. The problem comes from the time-harmonic Maxwell equations, the boundary conditions are those for Ω surrounded by a perfect conductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Azzollini A., Benci V., D’Aprile T., Fortunato D.: Existence of static solutions of the semilinear Maxwell equations. Ric. Mat. 55(2), 283–297 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Bartsch T.: Infinitely many solutions of a symmetric Dirichlet problem. Nonlin. Anal. 20(10), 1205–1216 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Bartsch T., Ding Y.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachrichten 279(12), 1267–1288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Benci V., Fortunato D.: Towards a unified field theory for classical electrodynamics. Arch. Ration. Mech. Anal. 173, 379–414 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Benci V., Rabinowitz P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52(3), 241–273 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • D’Aprile T., Siciliano G.: Magnetostatic solutions for a semilinear perturbation of the Maxwell equations. Adv. Differ. Equ. 16(5-6), 435–466 (2011)

    MATH  MathSciNet  Google Scholar 

  • Corvellec J.-N., Degiovanni M., Marzocchi M.: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1(1), 151–171 (1993)

    MATH  MathSciNet  Google Scholar 

  • Ding, Y.: Variational methods for strongly indefinite problems. Interdisciplinary Mathematical Sciences, vol. 7. World Scientific Publishing, Singapore, 2007

  • Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C.: Photonic Crystals: Mathematical Analysis and Numerical Approximation. Springer, Basel, 2012

  • Kryszewski, Szulkin A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Diff. Equ. 3, 441–472 (1998)

    MATH  MathSciNet  Google Scholar 

  • Monk P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  • Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65, American Mathematical Society, Providence, Rhode Island, 1986

  • Struwe M.: Variational Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Stuart C.A.: Self-trapping of an electromagnetic field and bifurcation from the essential spectrum. Arch. Rational Mech. Anal. 113(1), 65–96 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Stuart C.A.: Modelling axi-symmetric travelling waves in a dielectric with nonlinear refractive index. Milan J. Math. 72, 107–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Stuart C.A., Zhou H.S.: A variational problem related to self-trapping of an electromagnetic field. Math. Methods Appl. Sci. 19(17), 1397–1407 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Stuart C.A., Zhou H.S.: Existence of guided cylindrical TM-modes in a homogeneous self-focusing dielectric. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(1), 69–96 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Stuart C.A., Zhou H.S.: A constrained minimization problem and its application to guided cylindrical TM-modes in an anisotropic self-focusing dielectric. Calc. Var. Partial Differ. Equ. 16(4), 335–373 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Stuart C.A., Zhou H.S.: Axisymmetric TE-modes in a self-focusing dielectric. SIAM J. Math. Anal. 37(1), 218–237 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Stuart C.A., Zhou H.S.: Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric. Math. Models Methods Appl. Sci. 20(9), 1681–1719 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Szulkin, A., Weth, T.: The method of Nehari manifold. Handbook of nonconvex analysis and applications, pp. 597–632. International Press, Somerville, 2010

  • Szulkin A., Weth T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Willem M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartsch.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T., Mederski, J. Ground and Bound State Solutions of Semilinear Time-Harmonic Maxwell Equations in a Bounded Domain. Arch Rational Mech Anal 215, 283–306 (2015). https://doi.org/10.1007/s00205-014-0778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0778-1

Keywords

Navigation