Skip to main content
Log in

Structural Optimization of Thin Elastic Plates: The Three Dimensional Approach

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The natural way to find the most compliant design of an elastic plate is to consider the three-dimensional elastic structures which minimize the work of the loading term, and pass to the limit when the thickness of the design region tends to zero. In this paper, we study the asymptotics of such a compliance problem, imposing that the volume fraction remains fixed. No additional topological constraint is assumed on the admissible configurations. We determine the limit problem in different equivalent formulations, and we provide a system of necessary and sufficient optimality conditions. These results were announced in Bouchitté et al. (C. R. Acad. Sci. Paris, Ser. I. 345:713–718, 2007). Furthermore, we investigate the vanishing volume fraction limit, which turns out to be consistent with the results in Bouchitté and Fragalà (Arch. Rat. Mech. Anal. 184:257–284, 2007; SIAM J. Control Optim. 46:1664–1682, 2007). Finally, some explicit computation of optimal plates are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire G.: Shape Optimization by the Homogenization Method. Springer, Berlin (2002)

    MATH  Google Scholar 

  2. Allaire G., Bonnetier E., Francfort G., Jouve F.: Shape optimization by the homogenization method. Numer.Math. 76, 27–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G., Kohn R.: Optimal design for minimum weightand compliance in plane stress using extremal microstructures. Eur. J. Mech. A/Solids 12, 839–878 (1993)

    MathSciNet  MATH  Google Scholar 

  4. Antonić N., Balenović N.: Optimal design for plates and relaxation. 7th International Conference on Operational Research (Rovinj, 1998). Math. Commun. 4, 111–119 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Banichuk N.V.: Problems and Methods of Optimal Structural Design. Plenum Press, New York (1983)

    Google Scholar 

  6. Attouch H.: Variational convergence for functions and operators. Applicable Mathematics Series. Pitman, Boston (1984)

    Google Scholar 

  7. Azé D., Attouch H., Wets J.B.: Convergence of convex–concave saddle functions: applications to convex programming and mechanics. Ann. Inst. H. Poincaré, Sect. C 5, 537–572 (1988)

    MATH  Google Scholar 

  8. Bonnetier E., Conca C.: Relaxation totale d’un problème d’optimisation de plaques. C. R. Acad. Sci. Paris 317, 931–936 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Bonnetier E., Conca C.: Approximation of Young measures by functions and application to a problem of optimal design for plates with variable thickness. Proc. R. Soc. Edinb. 124, 399–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnetier, E., Vogelius, M.: Relaxation of a compliance functional for a plate optimization problem. Applications of Multiple Scaling in Mechanics. (Eds. Ciarlet P.G., Sanchez-Palencia E.). Masson, Paris, 31–53, 1987

  11. Bouchitté, G.: Optimization of light structures: the vanishing mass conjecture. Homogenization, 2001 (Naples). GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 18. Gakkötosho, Tokyo, 131–145, 2003

  12. Bouchitté, G.: Convex analysis and duality methods. Variational Techniques. Encyclopedia of Mathematical physics. Academic Press, London, 642–652, 2006

  13. Bouchitté G., Fragalà I.: Homogenization of elastic thin structures: a measure-fattening approach. J. Convex Anal. 9(2), 339–362 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Bouchitté G., Fragalà I.: Second order energies on thin structures: variational theory and non-local effects. J. Funct. Anal. 204, 228–267 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouchitté G., Fragalà I.: Optimality conditions for mass design problems and applications to thin plates. Arch. Ration. Mech. Anal. 184, 257–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouchitté G., Fragalà I.: Optimal design of thin plates by a dimension reduction for linear constrained problems. SIAM J. Control Optim. 46, 1664–1682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bouchitté G., Fragalà I., Seppecher P.: 3D–2D analysis for the optimal elastic compliance problem C. R. Acad. Sci. Paris, Ser. I. 345, 713–718 (2007)

    MATH  Google Scholar 

  18. Bouchitté G., Gangbo W., Seppecher P.: Michell trusses and lines of principal action. Math. Models Methods Appl. Sci. 18(9), 1571–1603 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caillerie, D.: Models of thin or thick plates and membranes derived from linear elasticity. Applications of Multiple Scaling Inmechanics. Masson, Paris, 1987, pp. 54–68

  20. Ciarlet, P.: Mathematical Elasticity. Vol. 2, Theory of Plates. Studies in Mathematics and Applications, Vol. 27. North-Holland, Amsterdam, 1997

  21. Cioranescu, D., Saint Jean Paulin J.: Homogenization of Reticulated Structures. Applied Mathematical Sciences, Vol. 136. Springer, New York, 1999

  22. Dal Maso, G.: An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and Their Applications, Vol. 8. Birkhäuser, Basel, 1993

  23. Gibiansky, L.V., Cherkaev, A.V.: Design of composite plates of extremal rigidity. Topics in the mathematical modelling of composite materials, Ser. PNLDE, Vol. 31. Birkhauser, Basel, 95–137, 1997

  24. Kohn, R., Strang, G.: Optimal design and relaxation of variational problems I–III. Commun. Pure Appl. Math. 39, 113–137, 139–182, 353–377 (1986)

    Google Scholar 

  25. Hiai F., Umegaki H.: Integrals, conditional expectations and martingales functions. J. Multivar. Anal. 7, 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kohn, R., Vogelius, M.: This plates with varying thickness, and their relation to structural optimization. Homogenization and Effective Moduli of Materials and Media, IMA Math. Apl., Vol. 1. (Eds. Ericksen J., Kinderleherer D., Kohn R., Lions J.L.). Springer, Berlin, 126–149, 1986

  27. Lewinski T., Telega J.J.: Michell-like grillages and structures with locking. Arch. Mech. 53, 457–485 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Michell A.G.: The limits of economy of material in framed-structures. Philos. Mag. S. 6 8, 589–597 (1904)

    Article  Google Scholar 

  29. Muñoz J., Pedregal P.: On the relaxation of an optimal design problem for plates. Asymptotic Anal. 16, 125–140 (1998)

    MATH  Google Scholar 

  30. Plantema J.: Sandwich Construction. Wiley, New York (1996)

    Google Scholar 

  31. Sorin S.: A first course on zero-sum repeated games. Springer, Berlin (2002)

    MATH  Google Scholar 

  32. Strang G., Kohn R.: Hencky-Prandtl nets and constrained Michell trusses. Comput. Methods Appl. Mech. Eng. 36, 207–222 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Sprekels, J., Tiba, D.: A duality approach in the optimization of beams and plates. SIAM J. Control Optim. 39, 486–501 (1998/1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bouchitté.

Additional information

Communicated by J.M. Ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchitté, G., Fragalà, I. & Seppecher, P. Structural Optimization of Thin Elastic Plates: The Three Dimensional Approach. Arch Rational Mech Anal 202, 829–874 (2011). https://doi.org/10.1007/s00205-011-0435-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0435-x

Keywords

Navigation