Abstract
We provide a probabilistic analysis of the upwind scheme for d-dimensional transport equations. We associate a Markov chain with the numerical scheme and then obtain a backward representation formula of Kolmogorov type for the numerical solution. We then understand that the error induced by the scheme is governed by the fluctuations of the Markov chain around the characteristics of the flow. We show, in various situations, that the fluctuations are of diffusive type. As a by-product, we recover recent results due to Merlet and Vovelle (Numer Math 106: 129–155, 2007) and Merlet (SIAM J Numer Anal 46(1):124–150, 2007): we prove that the scheme is of order 1/2 in \({L^{\infty}([0,T],L^1(\mathbb R^d))}\) for an integrable initial datum of bounded variation and of order 1/2−ε, for all ε > 0, in \({L^{\infty}([0,T] \times \mathbb R^d)}\) for an initial datum of Lipschitz regularity. Our analysis provides a new interpretation of the numerical diffusion phenomenon.
Similar content being viewed by others
References
Bouche D., Ghidaglia J.-M., Pascal F.: Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation. SIAM J. Numer. Anal. 43(2), 578–603 (2005)
Bouchut F., Perthame B.: Kružkov’s estimates for scalar conservation laws revisited. Trans. Am. Math. Soc. 350(7), 2847–2870 (1998)
Chainais-Hillairet C.: Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. M 2(N Math. Model. Numer. Anal. 33(1), 129–156 (1999)
Cockburn B., Coquel F., Le Floch Ph.: An error estimate for finite volume methods for multidimensional conservation laws. Math. Comp. 63(207), 77–103 (1994)
Després B.: An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids. SIAM J. Numer. Anal. 42(2), 484–504 (2004)
Eymard R., Gallouët T., Ghilani M., Herbin R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volumes schemes. IMA J. Numer. Anal. 18, 563–594 (1998)
Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Method. Handbook for Numerical Analysis, Vol. VII (Eds. P. Ciarlet and J.-L. Lions). North Holland, Amsterdam, 2000
Freedman D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100–118 (1975)
Friedman A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)
Godounov, S., Zabrodine, A., Ivanov, M., Kraĭko, A., Prokopov, G.: Résolution numérique des problèmes multidimensionnels de la dynamique des gaz. (French.) [Numerical solution of multidimensional problems of gas dynamics] Translated from the Russian by Valéri Platonov. Mir, Moscow, 1979
Karatzas I., Shreve S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer-Verlag, New York (1991)
Kuznetsov N.N.: The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16(6), 1489–1502 (1976) 1627
Merlet B.: L ∞- and L 2-error estimates for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46(1), 124–150 (2007)
Merlet B., Vovelle J.: Error estimate for finite volume scheme. Numer. Math. 106, 129–155 (2007)
Mizohata S.: The Theory of Partial Differential Equations. Cambridge University Press, New York (1973)
Norris J.R.: Markov Chains. Reprint of 1997 original. Cambridge University Press, Cambridge (1998)
Petrov V.V.: Sums of Independent Random Variables. Springer-Verlag, New York (1975)
Ross S.M.: Introduction to Probability Models, 8th edn. Academic Press, Burlington (2003)
Shiryaev A.N.: Probability, 2nd edn. Springer-Verlag, New York (1996)
Tang T., Teng Z.H.: The sharpness of Kuznetsov’s \({O(\sqrt{\Delta x}) L\sp 1}\)-error estimate for monotone difference schemes. Math. Comp. 64(210), 581–589 (1995)
Varadhan S.R.S.: Probability Theory. Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2001)
Vila J.-P.: Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. RAIRO Modél. Math. Anal. Numér. 28(3), 267–295 (1994)
Vila J.-P., Villedieu P.: Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math. 94(3), 573–602 (2003)
Ziemer W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer, New York (1989)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Y. Brenier
Rights and permissions
About this article
Cite this article
Delarue, F., Lagoutière, F. Probabilistic Analysis of the Upwind Scheme for Transport Equations. Arch Rational Mech Anal 199, 229–268 (2011). https://doi.org/10.1007/s00205-010-0322-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-010-0322-x