Skip to main content
Log in

Desingularization of Vortices for the Euler Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the existence of stationary classical solutions of the incompressible Euler equation in the planes that approximate singular stationary solutions of this equation. The construction is performed by studying the asymptotics of equation \({-\varepsilon^2 \Delta u^\varepsilon=(u^\varepsilon-q-\frac{\kappa}{2\pi} \log \frac{1}{\varepsilon})_+^p}\) with Dirichlet boundary conditions and q a given function. We also study the desingularization of pairs of vortices by minimal energy nodal solutions and the desingularization of rotating vortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Struwe M.: Existence of steady vortex rings in an ideal fluid. Arch. Rational Mech. Anal. 108(2), 97–109 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Ambrosetti A., Mancini G. On some free boundary problems. Recent Contributions to Nonlinear Partial Differential Equ., pp. 24–36, 1981

  3. Anderson G.D., Vamanamurthy M.K., Vuorinen M.K. Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York, 1997

  4. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, New York, 1998

  5. Bartsch, T., Pistoia, A., Weth, T.: n-Vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-poisson and the Lane-Emden-Fowler equations, preprint

  6. Bartsch T., Weth T.: A note on additional properties of sign changing solutions to superlinear elliptic equations. Topol. Methods Nonlinear Anal. 22(1), 1–14 (2003)

    MATH  MathSciNet  Google Scholar 

  7. Bartsch T., Weth T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(3), 259–281 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bartsch T., Weth T., Willem M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berger M.S., Fraenkel L.E.: A global theory of steady vortex rings in an ideal fluid. Acta Math. 132, 13–51 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berger M.S., Fraenkel L.E.: Nonlinear desingularization in certain free-boundary problems. Commun. Math. Phys. 77(2), 149–172 (1980)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc., Boston, 1994

  12. Brock F., Solynin A.Yu.: An approach to symmetrization via polarization. Trans. Am. Math. Soc. 352(4), 1759–1796 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burton G.R.: Vortex rings in a cylinder and rearrangements. J. Differ. Equ. 70(3), 333–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burton G.R.: Steady symmetric vortex pairs and rearrangements. Proc. R. Soc. Edinburgh Sect. A 108(3–4), 269–290 (1988)

    MATH  MathSciNet  Google Scholar 

  15. Caffarelli L.A., Friedman A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47(3), 705–742 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Castro A., Cossio J., Neuberger J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27(4), 1041–1053 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zelati V.C., Rabinowitz P.H.: Homoclinic type solutions for a semilinear elliptic PDE on R n. Commun. Pure Appl. Math. 45(10), 1217–1269 (1992)

    Article  MATH  Google Scholar 

  18. del Pino M., Kowalczyk M., Musso M.: Singular limits in Liouville-type equations. Calc. Var. Partial Differ. Equ. 24(1), 47–81 (2005)

    Article  MATH  Google Scholar 

  19. Esposito P., Musso M., Pistoia A.: Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent. J. Differ. Equ. 227(1), 29–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Esposito, P., Musso, M., Pistoia, A.: On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity. Proc. Lond. Math. Soc. (3) 94(2), 497–519 (2007)

    Google Scholar 

  21. Fraenkel L.E.: A lower bound for electrostatic capacity in the plane. Proc. R. Soc. Edinburgh Sect. A 88(3–4), 267–273 (1981)

    MATH  MathSciNet  Google Scholar 

  22. Fraenkel, L.E.: An introduction to maximum principles and symmetry in elliptic problems. Cambridge Tracts in Mathematics, vol. 128. Cambridge University Press, Cambridge, 2000

  23. Friedman A., Turkington B.: Vortex rings: existence and asymptotic estimates. Trans. Am. Math. Soc. 268(1), 1–37 (1981)

    MATH  MathSciNet  Google Scholar 

  24. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001

  25. Kawohl, B.: Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150. Springer, Berlin, 1985

  26. Koebe P.: Abhandlungen zur Theorie der konformen Abbildung. IV. Abbildung mehrfach zusammenhängender schlichter Bereiche auf Schlitzbereiche. Acta Math. 41, 305–344 (1918)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kulpa W.: The Poincaré-Miranda theorem. Am. Math. Monthly 104(6), 545–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li G., Yan S., Yang J.: An elliptic problem related to planar vortex pairs. SIAM J. Math. Anal. 36(5), 1444–1460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis, Second, Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence, 2001

  30. Lin C.C.: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff–Routh function. Proc. Natl. Acad. Sci. USA 27, 570–575 (1941)

    Article  MATH  ADS  Google Scholar 

  31. Lin, C.C.: On the motion of vortices in two dimensions. University of Toronto Studies, Applied Mathematics Series, no. 5. University of Toronto Press, Toronto, 1943

  32. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Liné aire 1(4), 223–283 (1984)

    MATH  Google Scholar 

  33. Marchioro C., Pulvirenti M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91(4), 563–572 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, vol. 74. Springer, New York, 1989

  35. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa (3) 13, 115–162 (1959)

    MathSciNet  Google Scholar 

  36. Norbury J.: Steady planar vortex pairs in an ideal fluid. Commun. Pure Appl. Math. 28(6), 679–700 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Poincaré, H.: Figures d’équilibre d’une masse fluide. Paris, 1903

  38. Rabinowitz P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sarvas J.: Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. Ser. A I(522), 44 (1972)

    MathSciNet  Google Scholar 

  40. Schochet S.: The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation. Commun. Partial Differ. Equ. 20(5–6), 1077–1104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  41. Szegő G.: Über einige Extremalaufgaben der Potentialtheorie. Math. Z. 31, 583–593 (1930)

    Article  MathSciNet  Google Scholar 

  42. Turkington B. On steady vortex flow in two dimensions. I, II. Commun. Partial Differ. Equ. 8(9), 999–1030, 1031–1071 (1983)

    Google Scholar 

  43. Vuorinen, M.: Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, vol. 1319. Springer, Berlin, 1988

  44. Willem, M.: Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhauser Boston Inc., Boston, 1996

  45. Wolontis V.: Properties of conformal invariants. Am. J. Math. 74, 587–606 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yang J.: Existence and asymptotic behavior in planar vortex theory. Math. Models Methods Appl. Sci. 1(4), 461–475 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yang J.: Global vortex rings and asymptotic behaviour. Nonlinear Anal. 25(5), 531–546 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Smets.

Additional information

Communicated by V. Šverák

J. Van Schaftingen was partially supported by the Fonds de la Recherche Scientifique-FNRS (Belgium) and by the Fonds Spéciaux de Recherche (Université catholique de Louvain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smets, D., Van Schaftingen, J. Desingularization of Vortices for the Euler Equation. Arch Rational Mech Anal 198, 869–925 (2010). https://doi.org/10.1007/s00205-010-0293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0293-y

Keywords

Navigation