Skip to main content

Advertisement

Log in

Special Fast Diffusion with Slow Asymptotics: Entropy Method and Flow on a Riemannian Manifold

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation \({u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)}\) posed for \({x\in\mathbb R^d}\), t > 0, with a precise value for the exponent m = (d − 4)/(d − 2). The space dimension is d ≧ 3 so that m < 1, and even m = −1 for d = 3. This case had been left open in the general study (Blanchet et al. in Arch Rat Mech Anal 191:347–385, 2009) since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace– Beltrami operator of a suitable Riemannian Manifold \({(\mathbb R^d,{\bf g})}\), with a metric g which is conformal to the standard \({\mathbb R^d}\) metric. Studying the pointwise heat kernel behaviour allows to prove suitable Gagliardo–Nirenberg inequalities associated with the generator. Such inequalities in turn allow one to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker–Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson D.G., Serrin J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Rat. Mech. Anal. 25, 81–122 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bakry D., Coulhon T., Ledoux M., Saloff-Coste L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/1984. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin, 1985

  4. Bénilan, P., Crandall, M.G.: Regularizing effects of homogeneous evolution equations. Contributions to Analysis and Geometry (suppl. to Amer. Jour. Math.), pp. 23–39. Johns Hopkins University Press, Baltimore, 1981

  5. Besse A.L.: Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10. Springer, Berlin (1987)

    Google Scholar 

  6. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.-L.: Hardy–Poincaré inequalities and applications to nonlinear diffusions. C. R. Math. Acad. Sci. Paris 344, 431–436 (2007)

    MATH  MathSciNet  Google Scholar 

  7. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vázquez J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)

    Article  MATH  Google Scholar 

  8. Bonforte M., Vázquez J.L.: Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240, 399–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caffarelli L.A., Friedman A.: Asymptotic behaviour of solutions of u t  = Δu m as m → ∞. Indiana Univ. Math. J. 36(4), 711–718 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carrillo J.A., Jüngel A., Markowich P.A., Toscani G., Unterreiter A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carrillo J.A., Toscani G.: Asymptotic L 1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–142 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Carrillo J.A., Vázquez J.L.: Fine asymptotics for fast diffusion equations. Comm. Partial Differ. Equ. 28, 1023–1056 (2003)

    Article  MATH  Google Scholar 

  13. Chasseigne E., Vázquez J.L.: Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities. Arch. Ration. Mech. Anal. 164, 133–187 (2002)

    Article  MATH  ADS  Google Scholar 

  14. Chow B., Knopf D.: The Ricci flow: an introduction. Mathematical Surveys and Monographs, vol. 110. American Mathematical Society, Providence, RI (2004)

    Google Scholar 

  15. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence, RI; Science Press, New York, 2006

  16. Daskalopoulos P., Hamilton R.: Geometric estimates for the logarithmic fast diffusion equation. Comm. Anal. Geom. 12(1–2), 143–164 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Daskalopoulos P., Sesum N.: On the extinction profile of solutions to fast-diffusion. J. Reine Angew. Math. 622, 95–120 (2008)

    MATH  MathSciNet  Google Scholar 

  18. Davies E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, London (1989)

    Book  MATH  Google Scholar 

  19. Del Pino M., Dolbeault J.: Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 9(81), 847–875 (2002)

    MathSciNet  Google Scholar 

  20. del Pino M., Saez M.: On the Extinction Profile for Solutions of u t  = Δu (N-2)/(N+2). Indiana Univ. Math. J. 50(2), 612–628 (2001)

    MathSciNet  Google Scholar 

  21. Denzler J., Mc Cann R.J.: Fast diffusion to self-similarity: complete spectrum, long-time asymptotics, and numerology. Arch. Ration. Mech. Anal. 175, 301–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Elliott C.M., Herrero M.A., King J.R., Ockendon J.R.: The mesa problem: diffusion patterns for \({u_ t=\nabla\cdot(u\sp m\nabla u)}\) as m → +∞. IMA J. Appl. Math. 37(2), 147–154 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Fukushima M.: Dirichlet Forms and Markov Processes. North Holland, New York (1980)

    MATH  Google Scholar 

  24. Gagliardo E.: Proprietà di alcune classi di funzioni in piú variabili, (Italian). Ricerche Mat. 7, 102–137 (1958)

    MATH  MathSciNet  Google Scholar 

  25. Hamilton R.S.: The Ricci flow on surfaces. Contemporary Math. 71, 237–262 (1988)

    MathSciNet  Google Scholar 

  26. Herrero M.A., Pierre M.: The Cauchy problem for u t  = Δu m when 0 < m < 1. Trans. Am. Math. Soc. 291, 145–158 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jost J.: Riemannian Geometry and Geometric Analysis. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  28. Lederman C., Markowich P.A.: On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass. Comm. Partial Differ. Equ. 28, 301–332 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Müller, R.: Differential Harnack inequalities and the Ricci flow. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2006

  30. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  Google Scholar 

  31. Otto F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26, 101–174 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li P., Yau S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  33. Lu P., Ni L., Vázquez J.L., Villani C.: Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. (9) 91(1), 1–19 (2009)

    MATH  MathSciNet  Google Scholar 

  34. Ni, L.: The entropy formula for the linear heat equation. J. Geom. Anal. 14(1), 85–96 (2004). [And Adenda to “The entropy formula for the linear heat equation”, 14 (2) (2004), 339–334]

    Google Scholar 

  35. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. ArXiv:math.DG/0211159, 2002

  36. Vázquez J.L.: Asymptotic behaviour for the porous medium equation posed in the whole space. Dedicated to Philippe Bénilan. J. Evol. Equ. 3, 67–118 (2003)

    MATH  Google Scholar 

  37. Vázquez, J.L.: Smoothing and decay estimates for nonlinear diffusion equations. Oxford Lecture Notes in Math. and its Applications, vol. 33. Oxford University Press, New York, 2006

  38. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Oxford Mathematical Monographs. Clarendon Press,Oxford University Press, Oxford, 2007

  39. Yamabe H.: On a deformation of Riemannian structures on compact manifolds. Osaka Math. J. 12, 21–37 (1960)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Additional information

Communicated by V. Sverak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonforte, M., Grillo, G. & Vázquez, J.L. Special Fast Diffusion with Slow Asymptotics: Entropy Method and Flow on a Riemannian Manifold. Arch Rational Mech Anal 196, 631–680 (2010). https://doi.org/10.1007/s00205-009-0252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0252-7

Keywords

Navigation