Skip to main content
Log in

Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field

Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The long-time asymptotics is analyzed for all finite energy solutions to a model \(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)eiω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.

We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ − m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).

The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled \(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Berestycki H., Lions P.-L. (1983) Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345

    MathSciNet  MATH  Google Scholar 

  2. Berestycki H., Lions P.-L. (1983) Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82: 347–375

    MathSciNet  MATH  Google Scholar 

  3. Brezis H., Lieb E.H. (1984) Minimum action solutions of some ector field equations. Comm. Math. Phys. 96: 97–113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bohr N. (1913) On the constitution of atoms and molecules. Phil. Mag. 26: 1–25

    Article  MATH  Google Scholar 

  5. Buslaev V.S., Perel G.S. (1993) Scattering for the nonlinear Schrödinger equation: states that are close to a soliton. St. Petersburg Math. J. 4: 1111–1142

    MathSciNet  Google Scholar 

  6. Buslaev, V.S., Perelprimeman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. Nonlinear Evolution Equations, Volume 164 of Amer. Math. Soc. Transl. Ser. 2, 75–98. Amer. Math. Soc., Providence, RI, 1995

  7. Buslaev V.S., Sulem C. (2003) On asymptotic stability of solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20: 419–475

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Volume 25 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1992

  9. Cuccagna, S.: Asymptotic stability of the ground states of the nonlinear Schrödinger equation. Rend. Istit. Mat. Univ. Trieste 32, 105–118 (2002) (2001)

    MathSciNet  MATH  Google Scholar 

  10. Cuccagna S. (2001) Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54: 1110–1145

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuccagna S. (2003) On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15: 877–903

    Article  MathSciNet  MATH  Google Scholar 

  12. Cazenave T., Vázquez L. (1986) Existence of localized solutions for a classical nonlinear Dirac field. Comm. Math. Phys. 105: 35–47

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Esteban M.J., Georgiev V., Séré E. (1996) Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differential Equations 4: 265–281

    Article  MathSciNet  MATH  Google Scholar 

  14. Esteban M.J., SÉRÉ É. (1995) Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys. 171: 323–350

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gaudry G. (1966) Quasimeasures and operators commuting with convolution. Pacific J. Math. 18: 461–476

    Article  MathSciNet  MATH  Google Scholar 

  16. Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. W. A. Benjamin, Inc., New York, NY, 1964

  17. Guo Y., Nakamitsu K., Strauss W. (1995) Global finite-energy solutions of the Maxwell-Schrödinger system. Comm. Math. Phys. 170: 181–196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Glassey R.T., Strauss W.A. (1979) Decay of a Yang-Mills field coupled to a scalar field. Comm. Math. Phys. 67: 51–67

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ginibre J., Velo G. (1985) Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43: 399–442

    MathSciNet  MATH  Google Scholar 

  20. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, 1981

  21. Hörmander L. The Analysis of Linear Partial Differential Operators. I. Springer Study Edition. Springer-Verlag, Berlin, 1990

  22. Hörmander, L.: On the fully nonlinear Cauchy problem with small data. II. Microlocal Analysis and Nonlinear Waves (Minneapolis, MN, 1988–1989), Volume 30 of IMA Vol. Math. Appl., 51–81. Springer, New York, 1991

  23. Klainerman S. (1982) Long-time behavior of solutions to nonlinear evolution equations. Arch. Ration. Mech. Anal. 78: 73–98

    Article  MathSciNet  MATH  Google Scholar 

  24. Komech A.I., Mauser N.J., Vinnichenko A.P. (2004) Attraction to solitons in relativistic nonlinear wave equations. Russ. J. Math. Phys. 11: 289–307

    MathSciNet  MATH  Google Scholar 

  25. Komech A.I. (1991) Stabilization of the interaction of a string with a nonlinear oscillator. Mosc. Univ. Math. Bull. 46: 34–39

    MathSciNet  MATH  Google Scholar 

  26. Komech, A.I.: Linear partial differential equations with constant coefficients. Partial Differential Equations, II, Volume 31 Encyclopaedia Math. Sci., 121–255. Springer, Berlin, 1994

  27. Komech A.I. (1995) On stabilization of string-nonlinear oscillator interaction. J. Math. Anal. Appl. 196: 384–409

    Article  MathSciNet  MATH  Google Scholar 

  28. Komech A. (1999) On transitions to stationary states in one-dimensional nonlinear wave equations. Arch. Ration. Mech. Anal. 149: 213–228

    Article  MathSciNet  MATH  Google Scholar 

  29. Komech, A.I.: On attractor of a singular nonlinear U(1)-invariant Klein–Gordon equation. Progress in Analysis, Vol. I, II (Berlin, 2001), 599–611. World Sci. Publishing, River Edge, NJ, 2003

  30. Komech A., Spohn H. (2000) Long-time asymptotics for the coupled Maxwell–Lorentz equations. Comm. Partial Differential Equations 25: 559–584

    Article  MathSciNet  MATH  Google Scholar 

  31. Komech A., Spohn H., Kunze M. (1997) Long-time asymptotics for a classical particle interacting with a scalar wave field. Comm. Partial Differential Equations 22: 307–335

    MathSciNet  MATH  Google Scholar 

  32. Komech A.I., Vainberg B. (1996) On asymptotic stability of stationary solutions to nonlinear wave and Klein-Gordon equations. Arch. Ration. Mech. Anal. 134: 227–248

    Article  MathSciNet  MATH  Google Scholar 

  33. Levin, B.Y.: Lectures on Entire Functions. Volume 150 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996. In collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko.

  34. Morawetz C.S., Strauss W.A. (1972) Decay and scattering of solutions of a nonlinear relativistic wave equation. Comm. Pure Appl. Math. 25: 1–31

    Article  MathSciNet  MATH  Google Scholar 

  35. Pillet C.-A., Wayne C.E. (1997) Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Differential Equations 141: 310–326

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Schrödinger E. (1926) Quantisierung als eigenwertproblem. Ann. d. Phys. 81: 109

    Article  MATH  Google Scholar 

  37. Segal I.E. (1963) The global Cauchy problem for a relativistic scalar field with power interaction. Bull. Soc. Math. France 91: 129–135

    Article  MathSciNet  MATH  Google Scholar 

  38. Segal I.E. (1963) Non-linear semi-groups. Ann. of Math. (2) 78: 339–364

    Article  MathSciNet  MATH  Google Scholar 

  39. Strauss W.A. (1968) Decay and asymptotics for □ uf(u). J. Funct. Anal. 2: 409–457

    Article  MathSciNet  MATH  Google Scholar 

  40. Strauss W.A. (1977) Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55: 149–162

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Strauss, W.A.: Nonlinear invariant wave equations. Invariant Wave Equations (Proc. “Ettore Majorana” Internat. School of Math. Phys., Erice, 1977), Volume 73 of Lecture Notes in Phys., 197–249. Springer, Berlin, 1978

  42. Soffer A., Weinstein M.I. (1990) Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133: 119–146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Soffer A., Weinstein M.I. (1992) Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data. J. Differential Equations 98: 376–390

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Soffer A., Weinstein M.I. (1999) Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations. Invent. Math. 136: 9–74

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, 1997

  46. Titchmarsh E. (1926) The zeros of certain integral functions. Proc. London Math. Soc. 25: 283–302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Komech.

Additional information

Communicated by P-L. Lions.

Alexander Komech: On leave from Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komech, A., Komech, A. Global Attractor for a Nonlinear Oscillator Coupled to the Klein–Gordon Field. Arch Rational Mech Anal 185, 105–142 (2007). https://doi.org/10.1007/s00205-006-0039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0039-z

Keywords

Navigation