Skip to main content
Log in

Local Minimizers and Quasiconvexity – the Impact of Topology

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

The aim of this paper is to discuss the question of existence and multiplicity of strong local minimizers for a relatively large class of functionals : from a purely topological point of view. The basic assumptions on are sequential lower semicontinuity with respect to W1,p-weak convergence and W1,p-weak coercivity, and the target is a multiplicity bound on the number of such minimizers in terms of convenient topological invariants of the manifolds and .

In the first part of the paper, we focus on the case where is non-contractible and proceed by establishing a link between the latter problem and the question of enumeration of homotopy classes of continuous maps from various skeleta of into . As this in turn can be tackled by the so-called obstruction method, it is evident that our results in this direction are of a cohomological nature.

The second part is devoted to the case where =ℝN and is a bounded smooth domain. In particular we consider integrals

where the above assumptions on can be verified when the integrand F is quasiconvex and pointwise p-coercive with respect to the gradient argument. We introduce and exploit the notion of a topologically non-trivial domain and under this establish the first existence and multiplicity result for strong local minimizers of that in turn settles a longstanding open problem in the multi-dimensional calculus of variations as described in [6].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)

    Google Scholar 

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Google Scholar 

  3. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium 1, (Ed. Knops, R.J.), Pitman, London, 1977

  4. Ball, J.M.: Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edin. A 88, 315–328 (1981)

    Google Scholar 

  5. Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity and variational problems of arbitrary order. J. Funct. Anal. 41, 135–174 (1981)

    Google Scholar 

  6. Ball, J.M.: Some open problems in elasticity. In: Geometry, mechanics and dynamics, Springer, New York, 3–59 (2002)

  7. Bethuel, F., Zheng, X.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60–75 (1988)

    Google Scholar 

  8. Bethuel, F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 160, 153–206 (1991)

    Google Scholar 

  9. Birman, J.S.: Braids, links and mapping class groups. Annals of Mathematics studies 82, Princeton University Press, 1975

  10. Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics 139, Springer-Verlag, 1993

  11. Brezis, H., Li, Y.Y.: Topology and Sobolev spaces. J. Funct. Anal. 183, 321–369 (2001)

    Google Scholar 

  12. Brezis, H., Li, Y.Y., Mironescu, P., Nirenberg, L.: Degree and Sobolev spaces. Topol. Methods Nonlinear Anal. 13, 181–190 (1991)

    Google Scholar 

  13. Brezis, H., Nirenberg, L.: Degree theory and BMO, Parts I & II: Compact manifolds without boundaries & Compact manifolds with boundaries. Selecta Math. 1 & 2, 197–263 & 309–368 (1995) & (1996)

  14. Casson, A.J., Bleiler, S.A.: Automorphisms of surfaces after Nielsen and Thurston. LMSST 9, Cambridge University Press, 1988

  15. Chang, K.C.: Infinite dimensional Morse theory and multiple solution problems. Progress in Nonlinear Differential Equations and their Applications 6, Bikhäuser, 1991

  16. Dacorogna, B.: Direct methods in the calculus of variations. Applied Mathematical Sciences 78, Springer-Verlag, 1988

  17. Dacorogna, B., Fonseca, I., Maly, J., Trivisa, K.: Manifold constrained variational problems. Calc. Var. & PDEs. 9, 185–206 (1999)

    Google Scholar 

  18. Dal Maso, G.: Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications 8, Bikhäuser, 1992

  19. De Giorgi, E.: Convergence problems for functionals and operators. In: Proc. Int. meeting on recent methods in nonlinear analysis, (Eds. De Giorgi, E. et. al.), 223–244 (1979)

  20. Dieudonné, J.: A history of Algebraic and Differential Topology 1900–1960. Birkhäuser, 1989

  21. Dugundji, J.: Topology. Allyn and Bacon Series in Advanced Mathematics, 1966

  22. Duzaar, F., Kuwert, E.: Minimization of conformally invariant energies in homotopy classes. Calc. Var. & PDEs 6, 285–313 (1998)

    Google Scholar 

  23. Eells, J., Lemaire, L.: Two reports on harmonic maps, Bull. Lond. Math. Soc. 10 & 20, 1–68 & 385–524 (1978) & (1988)

  24. Eells, J., Wood, J.C.: Restrictions on harmonic maps of surfaces. Topology 15, 263–266 (1976)

    Google Scholar 

  25. Eilenberg, S.: Cohomology and continuous mappings, Ann. of Math. 40, 231–251 (1940)

    Google Scholar 

  26. Evans, L.C., Gariepy, R.: Some remarks concerning quasiconvexity and strong convergence. Proc. Roy. Soc. Edin. A 106, 53–61 (1987)

    Google Scholar 

  27. Federer, H.: A study of function spaces by spectral sequences. Trans. Amer. Math. Soc. 82, 340–361 (1956)

    Google Scholar 

  28. Federer, H.: Geometric measure theory. Graduate Texts in Mathematics 153, Springer-Verlag, 1969.

  29. Giaquinta, M., Modica, G., Souček, J.: The gap phenomenon for variational integrals in Sobolev spaces. Proc. Roy. Soc. Edin. A 120, 93–98 (1992)

    Google Scholar 

  30. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations, Vols. I & II, A series of Modern Surveys in Mathematics 38, Springer, 1997

  31. Gottlieb, D.H.: A certain subgroup of the fundamental group. Amer. J. Math. 87, 840–856 (1965)

    Google Scholar 

  32. Griffiths, H.B.: The fundamental group of a surface, and a theorem of Shreier. Acta Math. 110, 1–17 (1963)

    Google Scholar 

  33. Graves, L.M.: The Weierstrass condition for multiple integral variational problems. Duke Math. J. 5, 656–660 (1939)

    Google Scholar 

  34. Hajlasz, P.: Approximation of Sobolev mappings. Nonlinear Analysis TMA 22, 1579–1591 (1994)

    Google Scholar 

  35. Hansen, V.L.: The homotopy problem for the components in the space of maps on the n-sphere. Quart. J. Math. Oxford 25, 313–321 (1974)

    Google Scholar 

  36. Hansen, V.L.: Spaces of maps into Eilenberg-MacLane spaces. Can. J. Math. 33, 782–785 (1981)

    Google Scholar 

  37. Hansen, V.L.: The homotopy groups of a space of maps between oriented closed surfaces. Bull. Lond. Math. Soc. 15, 360–364 (1983)

    Google Scholar 

  38. Hang, F., Lin, F.H.: Topology of Sobolev mappings. Math. Res. Lett. 8, 321–330 (2001)

    Google Scholar 

  39. Hopf, H.: Abbildungsklassen n-dimensionaler Mannigfaltigkeiten. Math. Ann. 96, 209–224 (1927)

    Google Scholar 

  40. Hu, S.T.: Concerning the homotopy groups of the components of the mapping space Indag. Math. 8, 623–629 (1946)

    Google Scholar 

  41. Hu, S.T.: Homotopy theory. Academic Press, New York, 1959

  42. Hurewicz, W.: Beiträge zur topologie der deformationen. Verh. Nedel. Akad. Wetensch. 38 & 39, 112–119, 521–528 & 117–126, 215–224 (1935) & (1936)

  43. Hurewicz, W.: Collected works of Witold Hurewicz. (Ed. Kuperberg, K.), American Mathematical Society, 1995

  44. Hüsseinov, F.: Weierstrass condition for the general basic variational problem. Proc. Roy. Soc. Edin. A 125, 801–806 (1995)

    Google Scholar 

  45. John, F.: Uniqueness of nonlinear equilibrium for prescribed boundary displacement and sufficiently small strains. Comm. Pure Appl. Math. 25, 617–634 (1972)

    Google Scholar 

  46. Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)

    Google Scholar 

  47. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4, 59–90 (1994)

    Google Scholar 

  48. Kneser, H.: Die Deformationssätze der einfach zusammenhängenden Flächen. Math. Z. 25, 362–372 (1926)

    Google Scholar 

  49. Koh, S.S.: Note on the properties of the components of the mapping spaces Proc. Amer. Math. Soc. 11, 896–904 (1960)

    Google Scholar 

  50. Knops, R., Stuart, C.: Quasiconvexity and uniqueness of equilibrium solutions in non-linear elasticity. Arch. Rational Mech. Anal. 86, 233–249 (1984)

    Google Scholar 

  51. Kohn, R.V., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edin. A 111, 69–84 (1989)

    Google Scholar 

  52. Kristensen, J., Taheri, A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Max-Planck-Institute MIS (Leipzig) Preprint-Nr. 59, 2001

  53. Lemaire, L.: Applications harmoniques des surfaces Riemanniennes. J. Diff. Geom. 13, 51–87 (1978)

    Google Scholar 

  54. Lusternik, L., Schnirelman, L.: Méthodes topologiques dans les problémes variationelles. Actualities Sci. Ind. 188, 1934

  55. Manfredi, J.: Weakly monotone functions. J. Geom. Anal. 4, 393–402 (1994)

    Google Scholar 

  56. Meyers, N.G.: Quasiconvexity and lower semicontinuity of multiple integrals of any order. Trans. Amer. Math. Soc. 119, 225–249 (1965)

    Google Scholar 

  57. Milnor, J.: Morse theory. Annals of Mathematics studies, 51, Princeton University Press, 1963

  58. Morrey, C.B.: The problem of Plateau on a Riemannian manifold. Ann. of Math. 49, 807–851 (1948)

    Google Scholar 

  59. Morrey, C.B.: Multiple integrals in the calculus of variations. Graduate Texts in Mathematics 130, Springer-Verlag, 1966

  60. Müller, S., Tang, Q., Yan, B.S.: On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré, Analyse non linéaire 11, 217–243 (1994)

    Google Scholar 

  61. Müller, S., Spector, S.J.: An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131, 1–66 (1995)

    Google Scholar 

  62. Müller, S., Spector, S.J., Tang, Q.: Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal. 27, 959–976 (1996)

    Google Scholar 

  63. Olum, P.: Obstructions to extensions and homotopies. Ann. of Math. 52, 1–50 (1950)

    Google Scholar 

  64. Olum, P.: Mappings to manifolds and the notion of degree. Ann. of Math. 58, 458–480 (1953)

    Google Scholar 

  65. Palais, R.S.: Morse theory on Hilbert manifolds. Topology. 2, 299–340 (1963)

    Google Scholar 

  66. Palais, R.S.: Lusternik Schnirelman theory on Banach manifolds. Topology. 5, 115–132 (1966)

    Google Scholar 

  67. Palais, R.S.: Homotopy theory of infinite dimensional manifolds. Topology. 5, 1–16 (1966)

    Google Scholar 

  68. Palais, R.S.: Foundations of global non-linear analysis. Benjamin, New York, 1968

  69. Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Amer. Math. Soc. 70, 165–171 (1964)

    Google Scholar 

  70. Post, K., Sivaloganathan, J.: On homotopy conditions and the existence of multiple equilibria in finite elasticity. Proc. Roy. Soc. Edin. A 127, 595–614 (1997)

    Google Scholar 

  71. Rubinstein, J., Sternberg, P.: Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys. 179, 257–263 (1996)

    Google Scholar 

  72. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. of Math. 113, 1–24 (1981)

    Google Scholar 

  73. Smale, S.: Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10, 621–626 (1959)

    Google Scholar 

  74. Šverák, V.: Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100, 105–127 (1988)

    Google Scholar 

  75. Schoen, R., Uhlenbeck, K.: Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18, 253–268 (1983)

    Google Scholar 

  76. Schwartz, J.T.: Nonlinear functional analysis. Gordon and Breach Science Publishers, 1969

  77. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)

    Google Scholar 

  78. Taheri, A.: Sufficiency theorems for local minimizers of the multiple integrals of the calculus of variations. Proc. Roy. Soc. Edin. A 131, 155–184 (2001)

    Google Scholar 

  79. Taheri, A.: Strong versus weak local minimizers for the perturbed Dirichlet functional. Calc. Var. & PDEs 15, 215–235 (2002)

    Google Scholar 

  80. Taheri, A.: On critical points of functionals with polyconvex integrands. J. Convex Anal. 9, 55–72 (2002)

    Google Scholar 

  81. Taheri, A.: Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations. To appear in Proc. Amer. Math. Soc. 2003

  82. Taheri, A.: On Artin’s braid group and polyconvexity in the calculus of variations. To appear in J. Lond. Math. Soc. 2003

  83. Uhlenbeck, K.: Morse theory on Banach Manifolds. J. Funct. Anal. 10, 430–445 (1972)

    Google Scholar 

  84. Uhlenbeck, K.: Morse theory by perturbation methods with applications to harmonic maps. Trans. Amer. Math. Soc. 267, 569–583 (1981)

    Google Scholar 

  85. Vodopyanov, S.K., Gol’dshtein, V.M.: Quasiconformal mappings and spaces of functions with generalized first derivatives. Siberian Math. J. 17, 515–531 (1977)

    Google Scholar 

  86. White, B.: Infima of energy functionals in homotopy classes of mappings. J. Diff. Geom. 23, 127–142 (1986)

    Google Scholar 

  87. White, B.: Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math. 160, 1–17 (1988)

    Google Scholar 

  88. Whitehead, G.W.: On products in homotopy groups. Ann. of Math. 47, 460–475 (1946)

    Google Scholar 

  89. Whitehead, G.W., Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer, 1978.

  90. Whitehead, J.H.C.: On certain theorems of G.W. Whitehead. Ann. of Math. 58, 418–428 (1953)

    Google Scholar 

  91. Whitney, H.: The maps of an n-complex into an n-sphere. Duke Math. J. 3, 51–55 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Taheri.

Additional information

Communicated by C.A. Stuart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taheri, A. Local Minimizers and Quasiconvexity – the Impact of Topology. Arch. Rational Mech. Anal. 176, 363–414 (2005). https://doi.org/10.1007/s00205-005-0356-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0356-7

Keywords

Navigation