Skip to main content
Log in

A Variational Model for Reconstructive Phase Transformations in Crystals, and their Relation to Dislocations and Plasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

1We study the reconstructive martensitic transformations in crystalline solids (i.e., martensitic transformations in which the parent and product lattices have arithmetic symmetry groups admitting no finite supergroup), the best known example of which is the bcc–fcc transformation in iron. We first describe the maximal Ericksen-Pitteri neighborhoods in the space of lattice metrics, thereby obtaining a quantitative characterization of the “weak” transformations, which occur within these domains. Then, focusing for simplicity on a two-dimensional setting, we construct a class of strain-energy functions admitting large strains in their domain, and which are invariant under the full symmetry group of the lattice. In particular, we exhibit an explicit energy suitable for the square-to-hexagonal reconstructive transformation in planar lattices. We present a numerical scheme based on atomic-scale finite elements and, by means of our constitutive function, we use it to analyze the effects of transformation cycling on a planar crystal. This example illustrates the main phenomena related to the reconstructive martensitic phase changes in crystals: in particular, the formation of dislocations, vacancies and interstitials in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  Google Scholar 

  2. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100, 13–52 (1987)

    MathSciNet  MATH  Google Scholar 

  3. Ball, J.M., James, R.D.: Proposed experimental test of a theory of fine microstructure and the two well problem. Phil. Trans. R. Soc. London A 338, 389–450 (1992)

    MATH  Google Scholar 

  4. Bhattacharya, K.: Microstructure of Martensite: Why it forms and how it gives rise to the Shape-Memory Effect. Oxford University Press, 2003

  5. Bhattacharya, K., Conti, S., Zanzotto, G., Zimmer, J.: Crystal Symmetry and the reversibility of martensitic transformations. Nature 428, 55–59 (2004).

    Article  Google Scholar 

  6. Buerger, J.M.: Elementary crystallography. Wiley, New York, 1963

  7. Chang, D., Mou, C.Y., Rosenstein, B., Wu, C.L.: Interpretation of the neutron scattering data on flux lattices of superconductors. 1. Lett. 80, 145–148 (1998) -1

    Google Scholar 

  8. Dmitriev, V.P., Rochal, S.B., Gufan, Yu.M., Tolédano, P.: Definition of a transcendental order parameter for reconstructive phase transitions. Phys. Rev. Lett. 60, 1958–1961 (1988)

    Article  Google Scholar 

  9. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer Verlag, Berlin, 1999

  10. Engel, P.: Geometric crystallography. D. Reidel Publishing Co., Dordrecht, 1986 -1

  11. Ericksen, J.L.: Nonlinear elasticity of diatomic crystals. Int. J. Solids Structures 6, 951–957 (1970)

    Article  Google Scholar 

  12. Ericksen, J.L.: Special topics in elastostatics. In: C.S. Yih, (ed), Adv. Appl. Mech. Vol 17. Academic Press, New York, 1977

  13. Ericksen, J.L.: Some phase transitions in crystals. Arch. Rational Mech. Anal. 73, 99–124 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Ericksen, J.L.: The Cauchy and Born hypotheses for crystals. In: M.E. Gurtin, (ed), Phase Transformations and Material Instabilities in Solids. Academic Press, New York, etc., 1984

  15. Ericksen, J.L.: Weak martensitic transformations in Bravais lattices. Arch. Rational Mech. Anal. 107, 23–36 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Ericksen, J.L.: Equilibrium theory for X-ray observations. Arch. Rational Mech. Anal. 139, 181–200 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ericksen, J.L.: Notes on the X-ray theory. Journal of Elasticity 55, 201–218 (1999)

    Article  MATH  Google Scholar 

  18. Folkins, I.: Functions of 2-dimensional Bravais lattices. J. Math. Phys. 32, 1965–1969 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fonseca, I.: Variational methods for elastic crystals. Arch. Rational Mech. Anal. 97, 189–220 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Friesecke, G., Theil, F.: Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlin. Sci. 12, 445–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gammel, P.L., Bishop, D.J., Eskildsen, M.R., Mortensen, K., Andersen, N.H., Fisher, I.R., Cheon, K.O., Canfield, P.C., Kogan, V.G.: Systematic studies of the square-hexagonal flux line lattice transition in Lu(Ni1-xCo x )2B2C: the role of nonlocality. Phys. Rev. Lett. 82, 4082–4085 (1999)

    Article  Google Scholar 

  22. Hatch, D.M., Lookman, T., Saxena, A., Stokes, H.T.: Systematics of group–nonsubgroup transitions: square to triangle transition. Phys. Rev. B 64, 060104.1–4 (2001)

    Article  Google Scholar 

  23. Holz, A.: Defect states and phase transition in the two-dimensional Wigner crystal. Phys. Rev. B 22, 3692–3705 (1980)

    Article  Google Scholar 

  24. Horovitz, B., Goodinb, R.J., Krumhansl, J.A.: Order parameters for reconstructive phase transitions (comment). Phys. Rev. Lett. 62, 843 (1989)

    Article  Google Scholar 

  25. James, R.D., Hane, K.T.: Martensitic transformations and shape-memory materials. Acta Mater 48, 197–222 (2000)

    Article  Google Scholar 

  26. Luskin, M.: On the computation of crystalline microstructure. Acta Numerica 5, 191–257 (1996)

    MATH  Google Scholar 

  27. Michel, L.: Bravais classes, Voronoï cells, Delone symbols. In: T. Lulek, W. Florek, S. Walcerz, (eds), Symmetry and structural properties of condensed matter. Academic Press, Singapore, 1995

  28. Michel, L.: Fundamental concepts for the study of crystal symmetry. Phys. Rep. 341, 265–336 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morris, J.R., Ho, K.M.: Molecular dynamic simulation of homogeneous bcc→hcp transition. Phys. Rev. B 63, 224116.1–9 (2001)

    Article  Google Scholar 

  30. Müller, S.: Variational models for microstructure and phase transitions. In: F. Bethuel et~al., (eds), Calculus of Variations and Geometric Evolution Problems, Springer Lecture Notes in Mathematics 1713, Berlin, Springer Verlag, 1999

  31. Parry, G.P.: On the elasticity of monatomic crystals. Math. Proc. Camb. Phil. Soc. 80, 189–211 (1976)

    MATH  Google Scholar 

  32. Parry, G.P.: Low-dimensional lattice groups for the continuum mechanics of phase transitions in crystals. Arch. Rational Mech. Anal. 145, 1–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pitteri, M.: Reconciliation of local and global symmetries of crystals. J. Elasticity 14, 175–190 (1984)

    MathSciNet  MATH  Google Scholar 

  34. Pitteri, M., Zanzotto, G.: Continuum theories for phase transitions and twinning in crystals. CRC/Chapman and Hall, London, 2002

  35. Rao, M., Sengupta, S., Shankar, R.: Shape-deformation-driven structural transitions in Quantum Hall skyrmions. Phys. Rev. Lett. 79, 3998–4001 (1997)

    Article  Google Scholar 

  36. Schwarzenberger, R.L.E.: Classification of crystal lattices. Proc. Cambridge Phil. Soc. 72, 325–349 (1972)

    MATH  Google Scholar 

  37. Smith, G.F., Rivlin, R.S.: The strain-energy function for anisotropic elastic materials. Trans. Am. Math. Soc. 88, 175–193 (1958)

    MATH  Google Scholar 

  38. Sternberg, S.: Group theory and physics. Cambridge University Press, Cambridge, 1994

  39. Terras, A.: Harmonic analysis on symmetric spaces and applications. Volume~2. Springer Verlag, Berlin, 1988

  40. Tolédano, P., Dmitriev, V.: Reconstructive Phase Transitions. World Scientific, Singapore, 1996

  41. Zanzotto, G.: On the material symmetry group of elastic crystals and the Born rule. Arch. Rational Mech. Anal. 121, 1–36 (1992)

    MathSciNet  MATH  Google Scholar 

  42. Zanzotto, G.: Nonlinear elasticity, the Cauchy-Born hypothesis, and mechanical twinning in crystals. Acta Cryst A 52, 839–849 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Zanzotto.

Additional information

Communicated by G. Friesecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, S., Zanzotto, G. A Variational Model for Reconstructive Phase Transformations in Crystals, and their Relation to Dislocations and Plasticity. Arch. Rational Mech. Anal. 173, 69–88 (2004). https://doi.org/10.1007/s00205-004-0311-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0311-z

Keywords

Navigation