Skip to main content
Log in

Commentary: cumulative risk assessment of perfluoroalkyl carboxylic acids and perfluoralkyl sulfonic acids: what is the scientific support for deriving tolerable exposures by assembling 27 PFAS into 1 common assessment group?

  • Letter to the Editor, News and Views
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This commentary proposes an approach to risk assessment of mixtures of per- and polyfluorinated alkyl substances (PFAS) as EFSA was tasked to derive a tolerable intake for a group of 27 PFAS. The 27 PFAS to be considered contain different functional groups and have widely variable physicochemical (PC) properties and toxicokinetics and thus should not treated as one group based on regulatory guidance for risk assessment of mixtures. The proposed approach to grouping is to split the 27 PFAS into two groups, perfluoroalkyl carboxylates and perfluoroalkyl sulfonates, and apply a relative potency factor approach (as proposed by RIVM) to obtain two separate group TDIs based on liver toxicity in rodents since liver toxicity is a sensitive response of rodents to PFAS. Short chain PFAS and other PFAS structures should not be included in the groups due to their low potency and rapid elimination. This approach is in better agreement with scientific and regulatory guidance for mixture risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • 3M-Company (2020) Comments submitted by the 3M Company for the Public consultation on the draft risk assessment of perfluoroalkyl substances in food. Zenodo. https://doi.org/10.5281/zenodo.4025326

  • Alison RH, Capen CC, Prentice DE (1994) Neoplastic lesions of questionable significance to humans. Toxicol Pathol 22:179–186. https://doi.org/10.1177/019262339402200211

    Article  CAS  PubMed  Google Scholar 

  • Antoniou E, Colnot T, Zeegers M, Dekant W (2022) Immunomodulation and exposure to per- and polyfluoroalkyl substances: an overview of the current evidence from animal and human studies. Arch Toxicol 96:2261–2285. https://doi.org/10.1007/s00204-022-03303-4

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (2018) Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological profile for toluene diisocyanate and methylenediphenyl diisocyanate US Department of Health and Human Services, Public Health Service, Jun 2018. ATSDR; US Department of Health and Human Services; Public Health Service, Agency for Toxic Substances and Disease Registry, p 267P

    Google Scholar 

  • ATSDR (2021) Agency for Toxic Substances and Disease Registry. Toxicological profile for perfluoroalkyls. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. Available: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1117&tid=237. doi:https://doi.org/10.15620/cdc:59198

  • Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA (2017) Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol 51:2047–2057. https://doi.org/10.1021/acs.est.6b05843

    Article  CAS  PubMed  Google Scholar 

  • Bil W, Zeilmaker M, Fragki S, Lijzen J, Verbruggen E, Bokkers B (2021) Risk assessment of per- and polyfluoroalkyl substance mixtures: a relative potency factor approach. Environ Toxicol Chem 40:859–870. https://doi.org/10.1002/etc.4835

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P (2022) An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol 96:1661–1671. https://doi.org/10.1007/s00204-022-03264-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, Jensen AA, Kannan K, Mabury SA, van Leeuwen SP (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541. https://doi.org/10.1002/ieam.258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capen CC (1997) Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 25:39–48. https://doi.org/10.1177/019262339702500109

    Article  CAS  PubMed  Google Scholar 

  • Chou WC, Lin Z (2019) Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environ Int 129:408–422. https://doi.org/10.1016/j.envint.2019.03.058

    Article  CAS  PubMed  Google Scholar 

  • Chou WC, Lin Z (2020) Probabilistic human health risk assessment of perfluorooctane sulfonate (PFOS) by integrating in vitro, in vivo toxicity, and human epidemiological studies using a Bayesian-based dose-response assessment coupled with physiologically based pharmacokinetic (PBPK) modeling approach. Environ Int 137:105581. https://doi.org/10.1016/j.envint.2020.105581

    Article  CAS  PubMed  Google Scholar 

  • Colnot T, Melching-Kollmuss S, Semino G, Dekant W (2020) A flow scheme for cumulative assessment of pesticides for adverse liver effects. Regul Toxicol Pharmacol 116:104694. https://doi.org/10.1016/j.yrtph.2020.104694

    Article  CAS  PubMed  Google Scholar 

  • Curran PG, DeGroot LJ (1991) The effect of hepatic enzyme-inducing drugs on thyroid hormones and the thyroid gland. Endocr Rev 12:135–150. https://doi.org/10.1210/edrv-12-2-135

    Article  CAS  PubMed  Google Scholar 

  • De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, Kärrman A, Kelly B, Ng C, Robuck A, Sun M, Webster TF, Sunderland EM (2021) PFAS exposure pathways for humans and wildlife: a synthesis of current knowledge and key gaps in understanding. Environ Toxicol Chem 40:631–657. https://doi.org/10.1002/etc.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dellarco VL, McGregor D, Berry SC, Cohen SM, Boobis AR (2006) Thiazopyr and thyroid disruption: case study within the context of the 2006 IPCS Human Relevance Framework for analysis of a cancer mode of action. Crit Rev Toxicol 36:793–801. https://doi.org/10.1080/10408440600975242

    Article  CAS  PubMed  Google Scholar 

  • EFSA, Chain PoCitF, Knutsen HK, Alexander J, Barregard L, Bignami M, Bruschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T (2018) Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 16:e05194. https://doi.org/10.2903/j.efsa.2018.5194

    Article  CAS  Google Scholar 

  • EFSA, Committee S, More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernandez-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, Silano V, Nielsen SS, Schrenk D, Turck D, Younes M, Benfenati E, Castle L, Cedergreen N, Hardy A, Laskowski R, Leblanc JC, Kortenkamp A, Ragas A, Posthuma L, Svendsen C, Solecki R, Testai E, Dujardin B, Kass GE, Manini P, Jeddi MZ, Dorne JC, Hogstrand C (2019) Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 17:e05634. https://doi.org/10.2903/j.efsa.2019.5634

    Article  Google Scholar 

  • EFSA, Committee S, More SJ, Bampidis V, Benford D, Bragard C, Hernandez-Jerez A, Bennekou SH, Halldorsson TI, Koutsoumanis KP, Lambre C, Machera K, Naegeli H, Nielsen SS, Schlatter JR, Schrenk D, Silano V, Turck D, Younes M, Benfenati E, Crepet A, Te Biesebeek JD, Testai E, Dujardin B, Dorne JLC, Hogstrand C (2021) Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA J 19:e07033. https://doi.org/10.2903/j.efsa.2021.7033

    Article  Google Scholar 

  • EFSA-PPR (2013) EFSA panel on plant protection products and their residues. Scientific opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J 11:3293. https://doi.org/10.2903/j.efsa.2013.3293

    Article  CAS  Google Scholar 

  • Foster JR, Semino-Beninel G, Melching-Kollmuss S (2020) The cumulative risk assessment of hepatotoxic chemicals: a hepatic histopathology perspective. Toxicol Pathol 48:397–410. https://doi.org/10.1177/0192623319895481

    Article  PubMed  Google Scholar 

  • Foster JR, Tinwell H, Melching-Kollmuss S (2021) A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol 95:807–836. https://doi.org/10.1007/s00204-020-02961-6

    Article  CAS  PubMed  Google Scholar 

  • Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gutzkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M (2021) Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 51:141–164. https://doi.org/10.1080/10408444.2021.1888073

    Article  CAS  PubMed  Google Scholar 

  • FSANZ (2017) Hazard Assessment Report—Perfluorooctane Sulfonate(PFOS). Food Standards Australia New Zealand, Perfluorooctanoic Acid (PFOA), Perfluorohexane Sulfonate(PFHxS)

    Google Scholar 

  • Gomis MI, Vestergren R, Borg D, Cousins IT (2018) Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int 113:1–9. https://doi.org/10.1016/j.envint.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  • Goodrum PE, Anderson JK, Luz AL, Ansell GK (2021) Application of a framework for grouping and mixtures toxicity assessment of PFAS: a closer examination of dose-additivity approaches. Toxicol Sci 179:262–278. https://doi.org/10.1093/toxsci/kfaa123

    Article  CAS  PubMed  Google Scholar 

  • Health-Canada (2018a) Guidelines for Canadian Drinking WaterQuality: Guideline Technical Document: Perfluorooctane Sulfonate (PFOS). Water and AirQuality Bureau, Healthy Environmentsand Consumer Safety Branch, Health Canada, Ottawa, Ontario

    Google Scholar 

  • Health-Canada (2018b) Guidelines for Canadian Drinking WaterQuality: Guideline Technical Document: Perfluorooctanoic Acid(PFOA). Water and Air Quality Bureau, Healthy Environmentsand Consumer Safety Branch, Health Canada, Ottawa, Ontario

    Google Scholar 

  • Health-Canada (2018c) Science Policy Note SPN2018c-02, Cumulative Health Risk Assessment Framework.Available: https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/policies-guidelines/science-policy-notes/2018c/cumulative-health-risk-assessment-framework-spn2018c-02.html.

  • Health-Canada, (2019) Summary Table: Health Canada DraftGuidelines, Screening Values and Toxicological Reference Values (TRVs) for Perfluoroalkyl Substances (PFAS). Health Canada, Ottawa, Ontario

    Google Scholar 

  • Hovey RC, Coder PS, Wolf JC, Sielken RL Jr, Tisdel MO, Breckenridge CB (2011) Quantitative assessment of mammary gland development in female Long Evans rats following in utero exposure to atrazine. Toxicol Sci 119:380–390. https://doi.org/10.1093/toxsci/kfq337

    Article  CAS  PubMed  Google Scholar 

  • Jahnke A, Berger U (2009) Trace analysis of per- and polyfluorinated alkyl substances in various matrices-how do current methods perform? J Chromatogr A 1216:410–421. https://doi.org/10.1016/j.chroma.2008.08.098

    Article  CAS  PubMed  Google Scholar 

  • Lampic A, Parnis JM (2020) Property estimation of per- and polyfluoroalkyl substances: a comparative assessment of estimation methods. Environ Toxicol Chem 39:775–786. https://doi.org/10.1002/etc.4681

    Article  CAS  PubMed  Google Scholar 

  • Meek ME, Boobis AR, Crofton KM, Heinemeyer G, Raaij MV, Vickers C (2011) Risk assessment of combined exposure to multiple chemicals: a WHO/IPCS framework. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2011.03.010

    Article  PubMed  Google Scholar 

  • Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C (2014) New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol 34:1–18. https://doi.org/10.1002/jat.2949

    Article  CAS  PubMed  Google Scholar 

  • Patlewicz G, Fitzpatrick JM (2016) Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chem Res Toxicol 29:438–451. https://doi.org/10.1021/acs.chemrestox.5b00388

    Article  CAS  PubMed  Google Scholar 

  • Patlewicz G, Ball N, Becker RA, Booth ED, Cronin MT, Kroese D, Steup D, van Ravenzwaay B, Hartung T (2014) Read-across approaches–misconceptions, promises and challenges ahead. Altex 31:387–396. https://doi.org/10.14573/altex.1410071

    Article  PubMed  Google Scholar 

  • Peters JM, Gonzalez FJ (2011) Why toxic equivalency factors are not suitable for perfluoroalkyl chemicals. Chem Res Toxicol 24:1601–1609. https://doi.org/10.1021/tx200316x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pizzurro DM, Seeley M, Kerper LE, Beck BD (2019) Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regul Toxicol Pharmacol 106:239–250. https://doi.org/10.1016/j.yrtph.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  • RIVM, Zeilmaker MJ, Fragki S, Verbruggen EMJ, Bokkers BGH, Lijzen JPA (2018) Mixture exposure to PFAS: A Relative Potency Factor approach. Report number 2018–0070.

  • Rosen MB, Abbott BD, Wolf DC, Corton JC, Wood CR, Schmid JE, Das KP, Zehr RD, Blair ET, Lau C (2008a) Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid. Toxicol Pathol 36:592–607. https://doi.org/10.1177/0192623308318208

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, Waalkes MP, Abbott BD, Lau C, Corton JC (2008b) Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103:46–56. https://doi.org/10.1093/toxsci/kfn025

    Article  CAS  PubMed  Google Scholar 

  • EFSA-CONTAM Panel, Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Leblanc J-C, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregard L, Ceccatelli S, Cravedi J-P, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A-C, VanLoveren H, Vollmer G, Mackay K, Riol F, Schwerdtle T (2020) Panel on Contaminants in the Food Chain: Scientific Opinion on the risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 18:391. https://doi.org/10.2903/j.efsa.2020.6223

    Article  CAS  Google Scholar 

  • Simon JA, Abrams S, Bradburne T, Bryant D, Burns M, Cassidy D, Cherry J, Chiang S-Y, Cox D, Crimi M, Denly E, DiGuiseppi B, Fenstermacher J, Fiorenza S, Guarnaccia J, Hagelin N, Hall L, Hesemann J, Houtz E, Koenigsberg SS, Lauzon F, Longsworth J, Maher T, McGrath A, Naidu R, Newell CJ, Parker BL, Singh T, Tomiczek P, Wice R (2019) PFAS experts symposium: statements on regulatory policy, chemistry and analytics, toxicology, transport/fate, and remediation for per- and polyfluoroalkyl substances (PFAS) contamination issues. Remediat J 29:31–48. https://doi.org/10.1002/rem.21624

    Article  Google Scholar 

  • Teuschler LK (2007) Deciding which chemical mixtures risk assessment methods work best for what mixtures. Toxicol Appl Pharmacol 223:139–147. https://doi.org/10.1016/j.taap.2006.07.010

    Article  CAS  PubMed  Google Scholar 

  • UK-COT (2021) UK-Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment: Statement on the 2020 EFSA Opinion on the risks to human health related to the presence of perfluoroalkyl substances in food, TOX/2021/35.

  • US-EPA (2000) Environmental Protection Agency. Supplementary Guidance for Conducting Health RiskAssessment of Chemical Mixtures Risk Assessment Forum. US Environmental Protection Agency, Washington

    Google Scholar 

  • US-EPA (2007) Concepts, Methods and Data Sources for Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document National Center for Environmental Assessment. United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US-EPA (2014) Environmental Protection Agency. Provisional Peer-Reviewed Toxicty Values for Perfluorobutane Sulfonate (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3). Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development U.S Environmental Protection Agency, Cincinnati

    Google Scholar 

  • US-EPA (2016a) Environmental Protection Agency. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Health and Ecological Criteria Division Office of Water. US Environmental Protection Agency, Washington

    Google Scholar 

  • US-EPA (2016ab) Environmental Protection Agency. Health Effects Support Document for Perfluorooctanoic Acid (PFOA). Health and Ecological Criteria Division, Office of Water. US Environmental Protection Agency, Washington

    Google Scholar 

  • Zhang L, Ren XM, Wan B, Guo LH (2014) Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 279:275–283. https://doi.org/10.1016/j.taap.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Dong XY, Fan LJ, Zhang ZL, Wang Q, Jiang N, Yang XS (2017) Poly- and perfluorinated compounds activate human pregnane X receptor. Toxicology 380:23–29. https://doi.org/10.1016/j.tox.2017.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

3M, the company that funded portions of this research, previously manufactured products containing perfluorooctanoyl chemistries, including PFOA and PFOS. The 3M support was to Prof. Dr. Wolfgang Dekant, a retired professor of toxicology at the Department of Pharmacology and Toxicology of the University of Würzburg and today an independent consultant to several REACH consortia, trade organization and individual companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Dekant.

Ethics declarations

Conflict of interest

Each author certifies that their freedom to design, conduct, interpret, and publish research was not compromised by the sponsor. No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colnot, T., Dekant, W. Commentary: cumulative risk assessment of perfluoroalkyl carboxylic acids and perfluoralkyl sulfonic acids: what is the scientific support for deriving tolerable exposures by assembling 27 PFAS into 1 common assessment group?. Arch Toxicol 96, 3127–3139 (2022). https://doi.org/10.1007/s00204-022-03336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-022-03336-9

Keywords

Navigation