Skip to main content
Log in

The effects of the obesogen tributyltin on the metabolism of Sertoli cells cultured ex vivo

  • Regulatory Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Human exposure to environmental contaminants is widespread. Some of these contaminants have the ability to interfere with adipogenesis, being thus considered as obesogens. Recently, obesogens have been singled out as a cause of male infertility. Sertoli cells (SCs) are essential for male fertility and their metabolic performance, especially glucose metabolism, is under a tight endocrine control, being essential for the success of spermatogenesis. Herein, we studied the impact of the model obesogen tributyltin in the metabolic profile of SCs. For that, ex vivo-cultured rat SCs were exposed to increasing doses of tributyltin. SCs proliferation was evaluated by the sulforhodamine B assay and the maturation state of the cells was assessed by the expression of specific markers (inhibin B and the androgen receptor) by quantitative polymerase chain reaction. The metabolic profile of SCs was established by studying metabolites consumption/production by nuclear magnetic resonance spectroscopy and by analyzing the expression of key transporters and enzymes involved in glycolysis by Western blot. The proliferation of SCs was only affected in the cells exposed to the highest dose (1000 nM) of tributyltin. Notably, SCs exposed to 10 nM tributyltin decreased the consumption of glucose and pyruvate, as well as the production of lactate. The decreased lactate production hampers the development of germ cells. Intriguingly, the lowest levels of tributyltin were more prone to modulate the expression of key players of the glycolytic pathway. This is the first study showing that tributyltin reprograms glucose metabolism of SCs under ex vivo conditions, suggesting new targets and mechanisms through which obesogens modulate the metabolism of SCs and thus male (in)fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

1H-NMR:

Proton nuclear magnetic resonance

AR:

Androgen receptor

β2MG:

β2-Microglobulin

CAMs:

Cell adhesion molecules

cDNA:

Complementary deoxyribonucleic acid

DMEM:F12:

Dulbecco’s modified eagle medium Ham’s nutrient mixture F12

EtOH:

Ethanol

GLUT1:

Glucose transporter 1

GLUT2:

Glucose transporter 2

GLUT3:

Glucose transporter 3

GLUTs:

Glucose transporters

HBSS:

Hank’s balanced salts solution

ITS:

Insulin–transferrin–sodium selenite

LDH:

Lactate dehydrogenase

MCT4:

Monocarboxylate transporter 4

PBS:

Phosphate-buffered Saline

PFK1:

Phosphofructokinase 1

PPARy:

Peroxisome proliferator-activated receptor gamma

RXR:

Retinoid X receptor

SCs:

Sertoli cells

SRB:

Colorimetric sulforhodamine B

T:

Testosterone

TBT:

Tributyltin

References

  • Adhikari N, Sinha N, Saxena D (2000) Effect of lead on Sertoli–germ cell coculture of rat. Toxicol Lett 116(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Alves MG, Neuhaus-Oliveira A, Moreira PI, Socorro S, Oliveira PF (2013a) Exposure to 2,4-dichlorophenoxyacetic acid alters glucose metabolism in immature rat Sertoli cells. Reprod Toxicol 38:81–88. doi:10.1016/j.reprotox.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  • Alves MG, Rato L, Carvalho RA, Moreira PI, Socorro S, Oliveira PF (2013b) Hormonal control of Sertoli cell metabolism regulates spermatogenesis. Cell Mol Life Sci 70(5):777–793

    Article  CAS  PubMed  Google Scholar 

  • Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int 34(2):292–308. doi:10.1016/j.envint.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  • Bajpai M, Gupta G, Setty B (1998) Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur J Endocrinol 138(3):322–327

    Article  CAS  PubMed  Google Scholar 

  • Bizarro P, Acevedo S, Nino-Cabrera G et al (2003) Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead–cadmium mixture. Reprod Toxicol 17(5):561–566

    Article  CAS  PubMed  Google Scholar 

  • Cardoso AM, Alves MG, Mathur PP, Oliveira PF, Cavaco JE, Rato L (2017) Obesogens and male fertility. Obes Rev 18(1):109–125. doi:10.1111/obr.12469

    Article  CAS  PubMed  Google Scholar 

  • D’Cruz SC, Jubendradass R, Jayakanthan M, Rani SJ, Mathur PP (2012) Bisphenol A impairs insulin signaling and glucose homeostasis and decreases steroidogenesis in rat testis: an in vivo and in silico study. Food Chem Toxicol 50(3–4):1124–1133. doi:10.1016/j.fct.2011.11.041

    Article  PubMed  Google Scholar 

  • Ferreira M, Blanco L, Garrido A, Vieites JM, Cabado AG (2013) In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells. J Agric Food Chem 61(17):4195–4203

    Article  CAS  PubMed  Google Scholar 

  • Grootegoed JA, Oonk RB, Jansen R, van der Molen HJ (1986) Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells. J Reprod Fertil 77(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Grun F, Blumberg B (2009a) Endocrine disrupters as obesogens. Mol Cell Endocrinol 304(1–2):19–29. doi:10.1016/j.mce.2009.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Grun F, Blumberg B (2009b) Minireview: the case for obesogens. Mol Endocrinol 23(8):1127–1134. doi:10.1210/me.2008-0485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grün F, Blumberg B (2006) Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 147(6):s50–s55. doi:10.1210/en.2005-1129

    Article  PubMed  Google Scholar 

  • Grun F, Watanabe H, Zamanian Z et al (2006) Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol 20(9):2141–2155

    Article  CAS  PubMed  Google Scholar 

  • Hutchison GR, Scott HM, Walker M et al (2008) Sertoli cell development and function in an animal model of testicular dysgenesis syndrome. Biol Reprod 78(2):352–360

    Article  CAS  PubMed  Google Scholar 

  • Janesick A, Blumberg B (2012) Obesogens, stem cells and the developmental programming of obesity. Int J Androl 35(3):437–448. doi:10.1111/j.1365-2605.2012.01247.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesus TT, Oliveira PF, Silva J et al (2016) Mammalian target of rapamycin controls glucose consumption and redox balance in human Sertoli cells. Fertil Steril 105(3):825–833. doi:10.1016/j.fertnstert.2015.11.032

    Article  CAS  PubMed  Google Scholar 

  • Johnson JH, Newgard CB, Milburn JL, Lodish HF, Thorens B (1990) The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem 265(12):6548–6551

    CAS  PubMed  Google Scholar 

  • Kannan K, Takahashi S, Fujiwara N, Mizukawa H, Tanabe S (2010) Organotin compounds, including butyltins and octyltins, in house dust from Albany, New York, USA. Arch Environ Contam Toxicol 58(4):901–907. doi:10.1007/s00244-010-9513-6

    Article  CAS  PubMed  Google Scholar 

  • Kim S-K, Kim J-H, Han JH, Yoon Y-D (2008) Inhibitory effect of tributyltin on expression of steroidogenic enzymes in mouse testis. Int J Toxicol 27(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Lahlou N, Bouvattier C, Linglart A, Rodrigue D, Teinturier C (2008) The role of gonadal peptides in clinical investigation. Ann Biol Clin (Paris) 67(3):283–292

    Google Scholar 

  • Levine KE, Young DJ, Afton SE et al (2015) Development, validation, and application of an ultra-performance liquid chromatography-sector field inductively coupled plasma mass spectrometry method for simultaneous determination of six organotin compounds in human serum. Talanta 140:115–121. doi:10.1016/j.talanta.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  • Mello MSC, Delgado IF, Favareto APA et al (2015) Sexual maturation and fertility of mice exposed to triphenyltin during prepubertal and pubertal periods. Toxicol Rep 2:405–414

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Srivastava A, Khandelwal S (2013) Tributyltin chloride induced testicular toxicity by JNK and p38 activation, redox imbalance and cell death in sertoli-germ cell co-culture. Toxicology 314(1):39–50. doi:10.1016/j.tox.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  • Mitra S, Srivastava A, Khanna S, Khandelwal S (2014) Consequences of tributyltin chloride induced stress in Leydig cells: an ex vivo approach. Environ Toxicol Pharmacol 37(2):850–860

    Article  CAS  PubMed  Google Scholar 

  • Monsees T, Franz M, Gebhardt S, Winterstein U, Schill W, Hayatpour J (2000) Sertoli cells as a target for reproductive hazards. Andrologia 32(4–5):239

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PF, Cheng CY, Alves MG (2017) Emerging role for mammalian target of rapamycin in male fertility. Trends Endocrinol Metab 28(3):165–167. doi:10.1016/j.tem.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rato L, Alves M, Socorro S, Carvalho RA, Cavaco JE, Oliveira PF (2012) Metabolic modulation induced by estradiol and DHT in immature rat Sertoli cells cultured in vitro. Biosci Rep 32(1):61–69. doi:10.1042/BSR20110030

    Article  CAS  PubMed  Google Scholar 

  • Rato L, Alves M, Dias T et al (2013) High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology 1(3):495–504

    Article  CAS  PubMed  Google Scholar 

  • Rato L, Alves M, Dias T, Cavaco J, Oliveira PF (2015a) Testicular metabolic reprogramming in neonatal streptozotocin-induced type 2 diabetic rats impairs glycolytic flux and promotes glycogen synthesis. J Diabetes Res. doi:10.1155/2015/973142

    PubMed  PubMed Central  Google Scholar 

  • Rato L, Alves MG, Duarte AI et al (2015b) Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells. Int J Biochem Cell Biol 66:1–10

    Article  CAS  PubMed  Google Scholar 

  • Rato L, Meneses MJ, Silva BM, Sousa M, Alves MG, Oliveira PF (2016) New insights on hormones and factors that modulate Sertoli cell metabolism. Histol Histopathol 31(5):499–513. doi:10.14670/HH-11-717

    CAS  PubMed  Google Scholar 

  • Raychoudhury SS, Flowers AF, Millette CF, Finlay MF (2000) Toxic effects of polychlorinated biphenyls on cultured rat Sertoli cells. J Androl 21(6):964–973

    CAS  PubMed  Google Scholar 

  • Reis M, Moreira AC, Sousa M, Mathur PP, Oliveira PF, Alves MG (2015) Sertoli cell as a model in male reproductive toxicology: advantages and disadvantages. J Appl Toxicol 35(8):870–883

    Article  CAS  PubMed  Google Scholar 

  • Riera MF, Galardo MN, Pellizzari EH, Meroni SB, Cigorraga SB (2009) Molecular mechanisms involved in Sertoli cell adaptation to glucose deprivation. Am J Physiol Endocrinol Metab 297(4):E907–E914. doi:10.1152/ajpendo.00235.2009

    Article  CAS  PubMed  Google Scholar 

  • Robeva R, Tomova A, Kirilov G, Kumanov P (2012) Anti-Mullerian hormone and inhibin B levels reflect altered Sertoli cell function in men with metabolic syndrome. Andrologia 44(Suppl 1):329–334. doi:10.1111/j.1439-0272.2011.01185.x

    Article  PubMed  Google Scholar 

  • Robinson R, Fritz IB (1981) Metabolism of glucose by Sertoli cells in culture. Biol Reprod 24(5):1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Shoucri B, Blumberg B (2016) Impact of environmental obesogens. In: Goran MI (ed) Childhood obesity. CRC Press, Boca Raton, pp 219–234

    Google Scholar 

  • Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ (2008) The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295(2):E242–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal RL, Valadares J (1968) Metabolic control mechanisms in mammalian systems. Hormonal regulation of phosphofructokinase in the rat prostate and seminal vesicles. Biochem J 110(4):703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa ACA, Pastorinho MR, Takahashi S, Tanabe S (2014) History on organotin compounds, from snails to humans. Environ Chem Lett 12(1):117–137. doi:10.1007/s10311-013-0449-8

    Article  CAS  Google Scholar 

  • Sousa AC, Coelho SD, Pastorinho MR et al (2017) Levels of TBT and other selected organotin compounds in duplicate diet samples. Sci Total Environ 574:19–23. doi:10.1016/j.scitotenv.2016.09.037

    Article  CAS  PubMed  Google Scholar 

  • Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312

    Article  CAS  PubMed  Google Scholar 

  • Uldry M, Ibberson M, Hosokawa M, Thorens B (2002) GLUT2 is a high affinity glucosamine transporter. FEBS Lett 524(1):199–203

    Article  CAS  PubMed  Google Scholar 

  • Yamabe Y, Hoshino A, Imura N, Suzuki T, Himeno S (2000) Enhancement of androgen-dependent transcription and cell proliferation by tributyltin and triphenyltin in human prostate cancer cells. Toxicol Appl Pharmacol 169(2):177–184. doi:10.1006/taap.2000.9067

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Kotake Y, Sekino Y, Kanda Y (2013) AMP-activated protein kinase-mediated glucose transport as a novel target of tributyltin in human embryonic carcinoma cells. Metallomics 5(5):484–491

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Kotake Y, Demizu Y, Kurihara M, Sekino Y, Kanda Y (2014) NAD-dependent isocitrate dehydrogenase as a novel target of tributyltin in human embryonic carcinoma cells. Sci Rep 4:5952. doi:10.1038/srep05952

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I—Strengthening research, technological development and innovation (Project No. 007491) and National Funds by FCT—Foundation for Science and Technology (Project UID/Multi/00709); CICECO (Ref. FCT UID/CTM/50011/2013); UMIB (PEst-OE/SAU/UI0215/2014). NMR data was collected at the UC-NMR facility which is supported in part by FEDER—European Regional Development Fund through the COMPETE Programme (Operational Programme for Competitiveness) and by National Funds through FCT—Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through Grants REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012, CENTRO-07-CT62-FEDER-002012, and Rede Nacional de Ressonância Magnética Nuclear (RNRMN). P.F. Oliveira (PTDC/BBB-BQB/1368/2014 and IFCT2015); M.G. Alves (IFCT2015 and PTDC/BIM-MET/4712/2014)) and L. Rato was funded by Santander-Totta/University of Beira Interior (BIPD/ICI-CICS-BST-UBI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Rato.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.M., Alves, M.G., Sousa, A.C. et al. The effects of the obesogen tributyltin on the metabolism of Sertoli cells cultured ex vivo. Arch Toxicol 92, 601–610 (2018). https://doi.org/10.1007/s00204-017-2091-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2091-x

Keywords

Navigation