Skip to main content

Advertisement

Log in

Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells

  • Immunotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2016

Abstract

Currently, it is not well understood how ligands of the aryl hydrocarbon receptor (AhR) modify inflammatory responses triggered by Toll-like receptor (TLR) agonists in human dendritic cells (DCs). Here, we show that AhR ligands 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the tryptophan derivatives 6-formylindolo[3,2-b] carbazole (FICZ), kynurenine (kyn), and the natural dietary compound indole-3-carbinol (I3C) differentially modify cytokine expression in human monocyte-derived DCs (MoDCs). The results show that TLR-activated MoDCs express higher levels of AhR and are more sensitive toward the effects of AhR ligands. Depending on the cytokine, treatment with AhR ligands led to a synergistic or antagonistic effect of the TLR-triggered response in MoDCs. Thus, activation of AhR increased the expression of interleukin (IL)-1β, but decreased the expression of IL-12A in TLR-activated MoDCs. Furthermore, TCDD and FICZ may have opposite effects on the expression of cytochrome P4501A1 (CYP1A1) in TLR8-activated MoDCs indicating that the effect of the specific AhR ligand may depend on the presence of the specific TLR agonist. Gene silencing showed that synergistic effects of AhR ligands on TLR-induced expression of IL-1β require a functional AhR and the expression of NF-κB RelB. On the other hand, repression of IL-12A by TCDD and FICZ involved the induction of the caudal type homeobox 2 (CDX2) transcription factor. Additionally, the levels of DC surface markers were decreased in MoDCs by TCDD, FICZ and I3C, but not by kyn. Overall, these data demonstrate that AhR modulates TLR-induced expression of cytokines and DC-specific surface markers in MoDCs involving NFκB RelB and the immune regulatory factor CDX2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashikaga T, Hoya M, Itagaki H, Katsumura Y, Aiba S (2002) Evaluation of CD86 expression and MHC class II molecule internalization in THP-1 human monocyte cells as predictive endpoints for contact sensitizers. Toxicol In Vitro 6:711–716

    Article  Google Scholar 

  • Bankoti J, Rase B, Simones T, Shepherd DM (2010) Functional and phenotypic effects of AhR activation in inflammatory dendritic cells. Toxicol Appl Pharmacol 246:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X (2012) The aryl hydrocarbon receptor system. Drug Metab Drug Interact 27:3–8

    Article  CAS  Google Scholar 

  • Berges C, Naujokat C, Tinapp S, Wieczorek H, Höh A, Sadeghi M, Opelz G, Daniel V (2005) A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun 333:896–907

    Article  CAS  PubMed  Google Scholar 

  • Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373:531–536

    Article  CAS  PubMed  Google Scholar 

  • Chang WL, Baumgarth N, Yu D, Barry PA (2004) Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol 78:8720–8731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanput W, Peters V, Wichers H (2015) THP-1 and U937 cells. In: Verhoeckx K et al (eds) The impact of food bioactives on gut health. Springer, New York, pp 147–159

    Google Scholar 

  • Coskun M, Troelsen JT, Nielsen OH (2011) The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta 1812:283–289

    Article  CAS  PubMed  Google Scholar 

  • Denison MS, Soshilov AA, He G, DeGroot DE, Zhao B (2011) Exactly the same but different: promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci 124:1–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNatale BC, Schroeder JC, Francey LJ, Kusnadi A, Perdew GH (2010) Mechanistic insights into the events that lead to synergistic induction of interleukin 6 transcription upon activation of the aryl hydrocarbon receptor and inflammatory signaling. J Biol Chem 32:24388–24397

    Article  Google Scholar 

  • Do KN, Fink LN, Jensen TE, Gautier L, Parlesak A (2012) TLR2 controls intestinal carcinogen detoxication by CYP1A1. PLoS ONE 7:e32309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou W, Mukherjee S, Li H, Venkatesh M, Wang H, Kortagere S, Peleg A, Chilimuri SS, Wang ZT, Feng Y, Fearon ER, Mani S (2012) Alleviation of gut inflammation by Cdx2/Pxr pathway in a mouse model of chemical colitis. PLoS ONE 7:e36075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumoutier L, de Heusch M, Orabona C, Satoh-Takayama N, Eberl G, Sirard JC, Di Santo JP, Renauld JC (2011) IL-22 is produced by γC-independent CD25 + CCR6 + innate murine spleen cells upon inflammatory stimuli and contributes to LPS-induced lethality. Eur J Immunol 41:1075–1085

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T, Bolouri H, Aderem A (2006) Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–178

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes T, Becknell B, Freud AG, McClory S, Briercheck E, Yu J, Mao C, Giovenzana C, Nuovo G, Wei L, Zhang X, Gavrilin MA, Wewers MD, Caligiuri MA (2010) Interleukin-1beta selectively expands and sustains interleukin-22 + immature human natural killer cells in secondary lymphoid tissue. Immunity 36:803–814

    Article  Google Scholar 

  • Jin G-B, Moore AJ, Head JL, Neumiller JJ, Lawrence BP (2010) Aryl hydrocarbon receptor activation reduces dendritic cell function during influenza virus infection. Toxicol Sci 116:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13:460–469

    Article  CAS  PubMed  Google Scholar 

  • Kerkvliet NI (2002) Recent advances in understanding the mechanisms of TCDD immunotoxicity. Int Immunopharmacol 2:277–291

    Article  CAS  PubMed  Google Scholar 

  • Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, Diefenbach A (2011) Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Lahoti TS, Boyer JA, Kusnadi A, Muku GE, Murray IA, Perdew GH (2015) Aryl hydrocarbon receptor activation synergistically induces lipopolysaccharide-mediated expression of proinflammatory chemokine (c–c motif) Ligand 20. Toxicol Sci 148:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence BP, Sherr DH (2012) You AhR what you eat? Nat Immunol 13:117–119

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD, Nukaya M, Mantovani A, Kopan R, Bradfield CA, Newberry RD, Colonna M (2012) AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 13:144–151

    Article  CAS  Google Scholar 

  • Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, Wilhelm C, Veldhoen M (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147:629–640

    Article  CAS  PubMed  Google Scholar 

  • Lowe MM, Mold JE, Kanwar B, Huang Y, Louie A, Pollastri MP, Wang C, Patel G, Franks DG, Schlezinger J, Sherr DH, Silverstone AE, Hahn ME, McCune JM (2014) Identification of cinnabarinic acid as a novel endogenous aryl hydrocarbon receptor ligand that drives IL-22 production. PLoS ONE 9:e87877

    Article  PubMed  PubMed Central  Google Scholar 

  • Luecke S, Wincent E, Backlund M, Rannug U, Rannug A (2010) Cytochrome P450 1A1 gene regulation by UVB involves crosstalk between the aryl hydrocarbon receptor and nuclear factor kappaB. Chem Biol Interact 3:466–473

    Article  Google Scholar 

  • Marshall NB, Kerkvliet NI (2010) Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci 1183:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MU, Wesche H (2002) Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592:265–280

    Article  CAS  PubMed  Google Scholar 

  • Memari B, Bouttier M, Dimitrov V, Ouellette M, Behr MA, Fritz JH, White JH (2015) Engagement of the aryl hydrocarbon receptor in mycobacterium tuberculosis-infected macrophages has pleiotropic effects on innate immune signaling. J Immunol 159:4479–4491

    Article  Google Scholar 

  • Mitchell KA, Lawrence BP (2003) Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) renders influenza virus-specific CD8 + T cells hyporesponsive to antigen. Toxicol Sci 74:74–84

    Article  CAS  PubMed  Google Scholar 

  • Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, Barison N, Diehl A, Munder A, Constant P, Skrahina T, Guhlich-Bornhof U, Klemm M, Koehler AB, Bandermann S, Goosmann C, Mollenkopf HJ, Hurwitz R, Brinkmann V, Fillatreau S, Daffe M, Tümmler B, Kolbe M, Oschkinat H, Krause G, Kaufmann SH (2014) AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512:387–392

    Article  CAS  PubMed  Google Scholar 

  • Pollard KM (2015) Environment, autoantibodies, and autoimmunity. Front Immunol 6:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Python F, Goebel C, Aeby P (2007) Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 220:113–124

    Article  CAS  PubMed  Google Scholar 

  • Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71

    Article  CAS  PubMed  Google Scholar 

  • Rohlman D, Pham D, Yu Z, Steppan LB, Kerkvliet NI (2012) Aryl hydrocarbon receptor-mediated perturbations in gene expression during early stages of CD4(+) T-cell differentiation. Front Immunol 3:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruby CE, Leid M, Kerkvliet NI (2002) 2,3,7,8-Tetrachlorodibenzo-p-dioxin suppresses tumor necrosis factor-alpha and anti-CD40-induced activation of NF-kappaB/Rel in dendritic cells: p50 homodimer activation is not affected. Mol Pharmacol 62:722–728

    Article  CAS  PubMed  Google Scholar 

  • Ryu J-H, Kim S-H, Lee H-Y, Bai JY, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  • Selmi C, Leung PSC, Sherr DH, Diaz M, Nyland JF, Monestier M, Rose NR, Gershwin ME (2012) Mechanisms of environmental influence on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop. J Autoimmun 39:272–284

    Article  PubMed  Google Scholar 

  • Sharfe N, Merico D, Karanxha A, Macdonald C, Dadi H, Ngan B, Herbrick J-A, Roifman CM (2015) The effects of RelB deficiency on lymphocyte development and function. J Autoimmun 65:90–100

    Article  CAS  PubMed  Google Scholar 

  • Shih VF-S, Davis-Turak J, Macal M, Huang JQ, Ponomarenko J, Kearns JD, Yu T, Fagerlund R, Asagiri M, Zuniga EI, Hoffmann A (2012) Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-kappaB pathways. Nat Immunol 13:1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shon W-J, Lee Y-K, Shin JH, Choi EY, Shin D-M (2015) Severity of DSS-induced colitis is reduced in Ido1-deficient mice with down-regulation of TLR-MyD88-NF-kB transcriptional networks. Sci Rep 5:17305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soshilov AA, Denison MS (2014) Ligand promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis. Mol Cell Biol 34:1707–1719

    Article  PubMed  PubMed Central  Google Scholar 

  • Takada Y, Andreeff M, Aggarwal BB (2005) Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 106:641–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y (2009) Ah receptor and NF-kappaB interplay on the stage of epigenome. Biochem Pharmacol 77:670–680

    Article  CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld J-C, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453:106–109

    Article  CAS  PubMed  Google Scholar 

  • Vogel CF, Matsumura F (2009) A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol 77:734–745

    Article  CAS  PubMed  Google Scholar 

  • Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F (2007a) RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol Endocrinol 21:2941–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel CF, Sciullo E, Matsumura F (2007b) Involvement of RelB in aryl hydrocarbon receptor-mediated induction of chemokines. Biochem Biophys Res Commun 36:722–726

    Article  Google Scholar 

  • Vogel CF, Goth SR, Dong B, Pessah IN, Matsumura F (2008) Aryl hydrocarbon receptor signaling mediates expression of indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 375:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel CF, Wu D, Goth SR, Baek J, Lollies A, Domhardt R, Grindel A, Pessah IN (2013) Aryl hydrocarbon receptor signaling regulates NF-kappaB RelB activation during dendritic-cell differentiation. Immunol Cell Biol 91:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel CF, Khan EM, Leung PSC, Gershwin ME, Chang WLW, Wu D, Haarmann-Stemmann T, Hoffmann A, Denison MS (2014) Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J Biol Chem 289:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang G, Leung PS, Matsumura F, Gershwin ME (2016) Transgenic overexpression of aryl hydrocarbon receptor repressor (AhRR) and AhR-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ Health Perspect 124:1071–1083

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Suzette Smiley-Jewell for critical reading of the manuscript. This publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health by Grant Number R01 ES019898 (to C.V.) and NIEHS/NIGMS Grant Number R01 ES013784 (to D.M.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph F. A. Vogel.

Additional information

Sarah Kado and W. L. William Chang have contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s00204-016-1896-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kado, S., Chang, W.L.W., Chi, A.N. et al. Aryl hydrocarbon receptor signaling modifies Toll-like receptor-regulated responses in human dendritic cells. Arch Toxicol 91, 2209–2221 (2017). https://doi.org/10.1007/s00204-016-1880-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1880-y

Keywords

Navigation