Skip to main content
Log in

Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Activation of Wnt/β-catenin signaling is important for human and rodent hepatocarcinogenesis. In mice, the tumor promoter phenobarbital (PB) selects for hepatocellular tumors with activating β-catenin mutations via constitutive androstane receptor activation. PB-dependent tumor promotion was studied in mice with genetic inactivation of Apc, a negative regulator of β-catenin, to circumvent the problem of randomly induced mutations by chemical initiators and to allow monitoring of PB- and Wnt/β-catenin-dependent tumorigenesis in the absence of unknown genomic alterations. Moreover, the study was designed to investigate PB-induced proliferation of liver cells with activated β-catenin. PB treatment provided Apc-deficient hepatocytes with only a minor proliferative advantage, and additional connexin 32 deficiency did not affect the proliferative response. PB significantly promoted the outgrowth of Apc-deficient hepatocellular adenoma (HCA), but simultaneously inhibited the formation of Apc-deficient hepatocellular carcinoma (HCC). The probability of tumor promotion by PB was calculated to be much lower for hepatocytes with loss of Apc, as compared to mutational β-catenin activation. Comprehensive transcriptomic and phosphoproteomic characterization of HCA and HCC revealed molecular details of the two tumor types. HCC were characterized by a loss of differentiated hepatocellular gene expression, enhanced proliferative signaling, and massive over-activation of Wnt/β-catenin signaling. In conclusion, PB exerts a dual role in liver tumor formation by promoting the growth of HCA but inhibiting the growth of HCC. Data demonstrate that one and the same compound can produce opposite effects on hepatocarcinogenesis, depending on context, highlighting the necessity to develop a more differentiated view on the tumorigenicity of this model compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aydinlik H, Nguyen TD, Moennikes O, Buchmann A, Schwarz M (2001) Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene 20:7812–7816

    Article  CAS  PubMed  Google Scholar 

  • Behrens J (2000) Control of beta-catenin signaling in tumor development. Ann N Y Acad Sci 910:21–33

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A (2009) Regulation of cytochrome P450 expression by Ras- and beta-catenin-dependent signaling. Curr Drug Metab 10:138–158

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A (2014) Liver cell proliferation and tumor promotion by phenobarbital: relevance for humans? Arch Toxicol 88:1771–1772

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Sanna R, Huelsken J, Schwarz M (2009) Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos 37:1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Singh Y, Rignall B et al (2010) Phenotype and growth behavior of residual beta-catenin-positive hepatocytes in livers of beta-catenin-deficient mice. Histochem Cell Biol 134:469–481

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Heubach Y, Knorpp T et al (2011) Gender-specific interplay of signaling through beta-catenin and CAR in the regulation of xenobiotic-induced hepatocyte proliferation. Toxicol Sci 123:113–122

    Article  CAS  PubMed  Google Scholar 

  • Buchmann A, Karcier Z, Schmid B, Strathmann J, Schwarz M (2008) Differential selection for B-raf and Ha-ras mutated liver tumors in mice with high and low susceptibility to hepatocarcinogenesis. Mutat Res 638:66–74

    Article  CAS  PubMed  Google Scholar 

  • Cagatay T, Ozturk M (2002) P53 mutation as a source of aberrant beta-catenin accumulation in cancer cells. Oncogene 21:7971–7980

    Article  CAS  PubMed  Google Scholar 

  • Caldwell CM, Kaplan KB (2009) The role of APC in mitosis and in chromosome instability. Adv Exp Med Biol 656:51–64

    Article  CAS  PubMed  Google Scholar 

  • Campbell HA, Pitot HC, Potter VR, Laishes BA (1982) Application of quantitative stereology to the evaluation of enzyme-altered foci in rat liver. Cancer Res 42:465–472

    CAS  PubMed  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colnot S, Decaens T, Niwa-Kawakita M et al (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101:17216–17221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B, Lee JS, Park YY et al (2015) Activating CAR and beta-catenin induces uncontrolled liver growth and tumorigenesis. Nat Commun 6:5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elcombe CR, Peffer RC, Wolf DC et al (2014) Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol 44:64–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganzenberg K, Singh Y, Braeuning A (2013) The time point of beta-catenin knockout in hepatocytes determines their response to xenobiotic activation of the constitutive androstane receptor. Toxicology 308:113–121

    Article  CAS  PubMed  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  CAS  PubMed  Google Scholar 

  • Groll N, Kollotzek F, Goepfert J, Joos TO, Schwarz M, Braeuning A (2016) Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells. Biol Chem 397:91–96

    Article  CAS  PubMed  Google Scholar 

  • Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25:415–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike C, Moore R, Negishi M (2007) Extracellular signal-regulated kinase is an endogenous signal retaining the nuclear constitutive active/androstane receptor (CAR) in the cytoplasm of mouse primary hepatocytes. Mol Pharmacol 71:1217–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GH (2000) Paradoxical effects of phenobarbital on mouse hepatocarcinogenesis. Toxicol Pathol 28:215–225

    Article  CAS  PubMed  Google Scholar 

  • Lee GH, Ooasa T, Osanai M (1998) Mechanism of the paradoxical, inhibitory effect of phenobarbital on hepatocarcinogenesis initiated in infant B6C3F1 mice with diethylnitrosamine. Cancer Res 58:1665–1669

    CAS  PubMed  Google Scholar 

  • Marx-Stoelting P, Mahr J, Knorpp T et al (2008) Tumor promotion in liver of mice with a conditional Cx26 knockout. Toxicol Sci 103:260–267

    Article  CAS  PubMed  Google Scholar 

  • Moennikes O, Buchmann A, Romualdi A et al (2000) Lack of phenobarbital-mediated promotion of hepatocarcinogenesis in connexin32-null mice. Cancer Res 60:5087–5091

    CAS  PubMed  Google Scholar 

  • Nault JC, Zucman-Rossi J (2011) Genetics of hepatobiliary carcinogenesis. Semin Liver Dis 31:173–187

    Article  CAS  PubMed  Google Scholar 

  • Oda H, Imai Y, Nakatsuru Y, Hata J, Ishikawa T (1996) Somatic mutations of the APC gene in sporadic hepatoblastomas. Cancer Res 56:3320–3323

    CAS  PubMed  Google Scholar 

  • Pirnia F, Pawlak M, Thallinger GG et al (2009) Novel functional profiling approach combining reverse phase protein microarrays and human 3-D ex vivo tissue cultures: expression of apoptosis-related proteins in human colon cancer. Proteomics 9:3535–3548

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Bhagabati NK, Braisted JC et al (2006) TM4 microarray software suite. Methods Enzymol 411:134–193

    Article  CAS  PubMed  Google Scholar 

  • Schneikert J, Behrens J (2007) The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 56:417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Rignall B, Braeuning A et al (2011) Phenotype of single hepatocytes expressing an activated version of beta-catenin in liver of transgenic mice. J Mol Histol 42:393–400

    Article  CAS  PubMed  Google Scholar 

  • Singh Y, Braeuning A, Schmid A, Pichler BJ, Schwarz M (2013) Selective poisoning of Ctnnb1-mutated hepatoma cells in mouse liver tumors by a single application of acetaminophen. Arch Toxicol 87:1595–1607

    Article  CAS  PubMed  Google Scholar 

  • Singh Y, Port J, Schwarz M, Braeuning A (2014) Genetic ablation of beta-catenin inhibits the proliferative phenotype of mouse liver adenomas. Br J Cancer 111:132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman V, Carey S, Dudoit R (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Strathmann J, Schwarz M, Tharappel JC et al (2006) PCB 153, a non-dioxin-like Tumor Promoter, Selects for {beta}-Catenin (Catnb) Mutated Mouse Liver Tumors. Toxicol Sci 93:34–40

    Article  CAS  PubMed  Google Scholar 

  • Tannour-Louet M, Porteu A, Vaulont S, Kahn A, Vasseur-Cognet M (2002) A tamoxifen-inducible chimeric Cre recombinase specifically effective in the fetal and adult mouse liver. Hepatology 35:1072–1081

    Article  CAS  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterberger EB, Eichner J, Wrzodek C et al (2014) Ha-ras and beta-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors. Int J Cancer 135:1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol 27:13–23

    Article  CAS  PubMed  Google Scholar 

  • Wolff GL, Morrissey RL, Chen JJ (1986) Amplified response to phenobarbital promotion of hepatotumorigenesis in obese yellow Avy/A (C3H × VY) F-1 hybrid mice. Carcinogenesis 7:1895–1898

    Article  CAS  PubMed  Google Scholar 

  • Zeller E, Hammer K, Kirschnick M, Braeuning A (2013) Mechanisms of RAS/beta-catenin interactions. Arch Toxicol 87:611–632

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Johanna Mahr, Silvia Vetter, and Elke Zabinsky for excellent technical assistance. The help of Janine Brettschneider with bioinformatic analyses is also greatly acknowledged. This work was supported by the European Union (Grant IMI-MARCAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Braeuning.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braeuning, A., Gavrilov, A., Geissler, M. et al. Tumor promotion and inhibition by phenobarbital in livers of conditional Apc-deficient mice. Arch Toxicol 90, 1481–1494 (2016). https://doi.org/10.1007/s00204-016-1667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1667-1

Keywords

Navigation