Skip to main content

Advertisement

Log in

The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The incidence, prevalence, and hospitalization rates associated with cardiovascular diseases (CVDs) are projected to increase substantially in the world. Understanding of the biological and pathophysiological mechanisms of survival can help the researchers to develop new management modalities. Numerous experimental studies have demonstrated that mid-chain HETEs are strongly involved in the pathogenesis of the CVDs. Mid-chain HETEs are biologically active eicosanoids that result from the metabolism of arachidonic acid (AA) by both lipoxygenase and CYP1B1 (lipoxygenase-like reaction). Therefore, identifying the localizations and expressions of the lipoxygenase and CYP1B1 and their associated AA metabolites in the cardiovascular system is of major importance in understanding their pathological roles. Generally, the expression of these enzymes is shown to be induced during several CVDs, including hypertension and cardiac hypertrophy. The induction of these enzymes is associated with the generation of mid-chain HETEs and subsequently causation of cardiovascular events. Of interest, inhibiting the formation of mid-chain HETEs has been reported to confer a protection against different cardiac hypertrophy and hypertension models such as angiotensin II, Goldblatt, spontaneously hypertensive rat and deoxycorticosterone acetate (DOCA)-salt-induced models. Although the exact mechanisms of mid-chain HETEs-mediated cardiovascular dysfunction are not fully understood, the present review proposes several mechanisms which include activating G-protein-coupled receptor, protein kinase C, mitogen-activated protein kinases, and nuclear factor kappa B. This review provides a clear understanding of the role of mid-chain HETEs in the pathogenesis of cardiovascular diseases and their importance as novel targets in the treatment for hypertension and cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad MJ, de las Heras B, Silvan AM et al (2001) Effects of furocoumarins from Cachrys trifida on some macrophage functions. J Pharm Pharmacol 53(8):1163–1168

    Article  PubMed  CAS  Google Scholar 

  • Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92(10):1079–1088. doi:10.1161/01.RES.0000072977.86706.23

    Article  PubMed  CAS  Google Scholar 

  • Anwar-Mohamed A, El-Sherbeni A, Kim SH et al (2013) Acute arsenic treatment alters cytochrome P450 expression and arachidonic acid metabolism in lung, liver and kidney of C57Bl/6 mice. Xenobiotica 43(8):719–729. doi:10.3109/00498254.2012.754113

    Article  PubMed  CAS  Google Scholar 

  • Arai M, Imai H, Metori A, Nakagawa Y (1997) Preferential esterification of endogenously formed 5-hydroxyeicosatetraenoic acid to phospholipids in activated polymorphonuclear leukocytes. Eur J Biochem FEBS 244(2):513–519

    Article  CAS  Google Scholar 

  • Awasthi S, Vivekananda J, Awasthi V, Smith D, King RJ (2001) CTP:phosphocholine cytidylyltransferase inhibition by ceramide via PKC-alpha, p38 MAPK, cPLA2, and 5-lipoxygenase. Am J Physiol Lung Cell Mol Physiol 281(1):L108–L118

    PubMed  CAS  Google Scholar 

  • Bailey JM, Makheja AN, Lee R, Simon TH (1995) Systemic activation of 15-lipoxygenase in heart, lung, and vascular tissues by hypercholesterolemia: relationship to lipoprotein oxidation and atherogenesis. Atherosclerosis 113(2):247–258

    Article  PubMed  CAS  Google Scholar 

  • Bandiera S, Weidlich S, Harth V, Broede P, Ko Y, Friedberg T (2005) Proteasomal degradation of human CYP1B1: effect of the Asn453Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol Pharmacol 67(2):435–443

    Article  PubMed  CAS  Google Scholar 

  • Bergholte JM, Soberman RJ, Hayes R, Murphy RC, Okita RT (1987) Oxidation of 15-hydroxyeicosatetraenoic acid and other hydroxy fatty acids by lung prostaglandin dehydrogenase. Arch Biochem Biophys 257(2):444–450

    Article  PubMed  CAS  Google Scholar 

  • Bolick DT, Orr AW, Whetzel A et al (2005) 12/15-lipoxygenase regulates intercellular adhesion molecule-1 expression and monocyte adhesion to endothelium through activation of RhoA and nuclear factor-κB. Arterioscler Thromb Vasc Biol 25(11):2301–2307. doi:10.1161/01.ATV.0000186181.19909.a6

    Article  PubMed  CAS  Google Scholar 

  • Bonacasa B, Sanchez ML, Rodriguez F et al (2008) 2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas 61(4):310–316. doi:10.1016/j.maturitas.2008.09.028

    Article  PubMed  CAS  Google Scholar 

  • Borgeat P, Picard S, Vallerand P, Sirois P (1981) Transformation of arachidonic acid in leukocytes. Isolation and structural analysis of a novel dihydroxy derivative. Prostaglandins Med 6(6):557–570

    Article  PubMed  CAS  Google Scholar 

  • Brash AR, Boeglin WE, Chang MS (1997) Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci USA 94(12):6148–6152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Braz JC, Gregory K, Pathak A et al (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10(3):248–254. doi:10.1038/nm1000

    Article  PubMed  CAS  Google Scholar 

  • Brezinski ME, Serhan CN (1990) Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc Natl Acad Sci USA 87(16):6248–6252

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brinckmann R, Schnurr K, Heydeck D, Rosenbach T, Kolde G, Kuhn H (1998) Membrane translocation of 15-lipoxygenase in hematopoietic cells is calcium-dependent and activates the oxygenase activity of the enzyme. Blood 91(1):64–74

    PubMed  CAS  Google Scholar 

  • Burhop KE, Selig WM, Malik AB (1988) Monohydroxyeicosatetraenoic acids (5-HETE and 15-HETE) induce pulmonary vasoconstriction and edema. Circ Res 62(4):687–698

    Article  PubMed  CAS  Google Scholar 

  • Cabral M, Martin-Venegas R, Moreno JJ (2013) Role of arachidonic acid metabolites on the control of non-differentiated intestinal epithelial cell growth. Int J Biochem Cell Biol 45(8):1620–1628. doi:10.1016/j.biocel.2013.05.009

    Article  PubMed  CAS  Google Scholar 

  • Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW (1981) Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci USA 78(9):5362–5366

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carreno JE, Apablaza F, Ocaranza MP, Jalil JE (2006) Cardiac hypertrophy: molecular and cellular events. Rev Esp Cardiol 59(5):473–486

    Article  PubMed  Google Scholar 

  • Carter GW, Young PR, Albert DH et al (1991) 5-lipoxygenase inhibitory activity of zileuton. J Pharmacol Exp Ther 256(3):929–937

    PubMed  CAS  Google Scholar 

  • Chan HY, Chen ZY, Tsang DS, Leung LK (2002) Baicalein inhibits DMBA-DNA adduct formation by modulating CYP1A1 and CYP1B1 activities. Biomed Pharmacother 56(6):269–275

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi S (2004) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure (JNC 7): is it really practical? Natl Med J India 17(4):227

    PubMed  Google Scholar 

  • Chen XS, Kurre U, Jenkins NA, Copeland NG, Funk CD (1994) cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem 269(19):13979–13987

    PubMed  CAS  Google Scholar 

  • Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I (2003) Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 414(1):91–100

    Article  PubMed  CAS  Google Scholar 

  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2004) Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32(8):840–847

    Article  PubMed  CAS  Google Scholar 

  • Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2005) Expression patterns of mouse and human CYP orthologs (families 1-4) during development and in different adult tissues. Arch Biochem Biophys 436(1):50–61. doi:10.1016/j.abb.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  • Conrad DJ, Kuhn H, Mulkins M, Highland E, Sigal E (1992) Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc Natl Acad Sci USA 89(1):217–221

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conway DE, Sakurai Y, Weiss D et al (2009) Expression of CYP1A1 and CYP1B1 in human endothelial cells: regulation by fluid shear stress. Cardiovasc Res 81(4):669–677. doi:10.1093/cvr/cvn360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dawling S, Roodi N, Parl FF (2003) Methoxyestrogens exert feedback inhibition on cytochrome P450 1A1 and 1B1. Cancer Res 63(12):3127–3132

    PubMed  CAS  Google Scholar 

  • DeForrest JM, Knappenberger RC, Antonaccio MJ, Ferrone RA, Creekmore JS (1982) Angiotensin II is a necessary component for the development of hypertension in the two kidney, one clip rat. Am J Cardiol 49(6):1515–1517

    Article  PubMed  CAS  Google Scholar 

  • Denison MS, Vella LM, Okey AB (1986) Structure and function of the Ah receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. Species difference in molecular properties of the receptors from mouse and rat hepatic cytosols. J Biol Chem 261(9):3987–3995

    PubMed  CAS  Google Scholar 

  • Deschamps JD, Kenyon VA, Holman TR (2006) Baicalein is a potent in vitro inhibitor against both reticulocyte 15-human and platelet 12-human lipoxygenases. Bioorg Med Chem 14(12):4295–4301. doi:10.1016/j.bmc.2006.01.057

    Article  PubMed  CAS  Google Scholar 

  • Dhanya BL, Swathy RP, Indira M (2014) Selenium downregulates oxidative stress-induced activation of leukotriene pathway in experimental rats with diabetic cardiac hypertrophy. Biol Trace Elem Res 161(1):107–115. doi:10.1007/s12011-014-0076-7

    Article  PubMed  CAS  Google Scholar 

  • DiNicolantonio JJ, Fares H, Niazi AK et al (2015) β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature. Open Heart 2(1):e000230. doi:10.1136/openhrt-2014-000230

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolegowska B, Blogowski W, Kedzierska K et al (2009) Platelets arachidonic acid metabolism in patients with essential hypertension. Platelets 20(4):242–249. doi:10.1080/09537100902849836

    Article  PubMed  CAS  Google Scholar 

  • Dubey RK, Gillespie DG, Zacharia LC, Barchiesi F, Imthurn B, Jackson EK (2003) CYP450- and COMT-derived estradiol metabolites inhibit activity of human coronary artery SMCs. Hypertension 41(3 Pt 2):807–813. doi:10.1161/01.HYP.0000048862.28501.72

    Article  PubMed  CAS  Google Scholar 

  • Dwarakanath RS, Sahar S, Lanting L et al (2008) Viral vector-mediated 12/15-lipoxygenase overexpression in vascular smooth muscle cells enhances inflammatory gene expression and migration. J Vasc Res 45(2):132–142. doi:10.1159/000109966

    Article  PubMed  CAS  Google Scholar 

  • Dzitoyeva S, Imbesi M, Ng LW, Manev H (2009) 5-Lipoxygenase DNA methylation and mRNA content in the brain and heart of young and old mice. Neural Plast 2009:209596. doi:10.1155/2009/209596

    PubMed  PubMed Central  Google Scholar 

  • Elshenawy OH, Anwar-Mohamed A, El-Kadi AO (2013) 20-Hydroxyeicosatetraenoic acid is a potential therapeutic target in cardiovascular diseases. Curr Drug Metab 14(6):706–719

    Article  PubMed  CAS  Google Scholar 

  • El-Sherbeni AA, El-Kadi AO (2014) Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 87(3):456–466. doi:10.1016/j.bcp.2013.11.015

    Article  PubMed  CAS  Google Scholar 

  • Eltom SE, Zhang L, Jefcoate CR (1999) Regulation of cytochrome P-450 (CYP) 1B1 in mouse Hepa-1 variant cell lines: a possible role for aryl hydrocarbon receptor nuclear translocator (ARNT) as a suppressor of CYP1B1 gene expression. Mol Pharmacol 55(3):594–604

    PubMed  CAS  Google Scholar 

  • Esposito G, Rapacciuolo A, Naga Prasad SV et al (2002) Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105(1):85–92

    Article  PubMed  CAS  Google Scholar 

  • Fard A, Wang CY, Takuma S et al (2000) Noninvasive assessment and necropsy validation of changes in left ventricular mass in ascending aortic banded mice. J Am Soc Echocardiogr 13(6):582–587

    Article  PubMed  CAS  Google Scholar 

  • Fava C, Ricci M, Melander O, Minuz P (2012) Hypertension, cardiovascular risk and polymorphisms in genes controlling the cytochrome P450 pathway of arachidonic acid: a sex-specific relation? Prostaglandins Other Lipid Mediat 98(3–4):75–85. doi:10.1016/j.prostaglandins.2011.11.007

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, McKeever BM, Xu S et al (2007) Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein. Science 317(5837):510–512. doi:10.1126/science.1144346

    Article  PubMed  CAS  Google Scholar 

  • Freeman RH, Davis JO, Watkins BE, Lohmeier TE (1977) Mechanisms involved in two-kidney renal hypertension induced by constriction of one renal artery. Circ Res 40(5 Suppl 1):I29–I35

    PubMed  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Verdugo I, BenMohamed F, Tattermusch S et al (2012) A role for 12R-lipoxygenase in MUC5AC expression by respiratory epithelial cells. Eur Respir J 40(3):714–723. doi:10.1183/09031936.00023111

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Nunez D, Claria J, Rivera F, Poch E (2001) Increased levels of 12(S)-HETE in patients with essential hypertension. Hypertension 37(2):334–338

    Article  PubMed  CAS  Google Scholar 

  • Grabellus F, Levkau B, Sokoll A et al (2002) Reversible activation of nuclear factor-κB in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res 53(1):124–130

    Article  PubMed  CAS  Google Scholar 

  • Granberg AL, Brunstrom B, Brandt I (2000) Cytochrome P450-dependent binding of 7,12-dimethylbenz[a]anthracene (DMBA) and benzo[a]pyrene (B[a]P) in murine heart, lung, and liver endothelial cells. Arch Toxicol 74(10):593–601

    Article  PubMed  CAS  Google Scholar 

  • Gross GJ, Falck JR, Gross ER, Isbell M, Moore J, Nithipatikom K (2005) Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. Cardiovasc Res 68(1):18–25. doi:10.1016/j.cardiores.2005.06.007

    Article  PubMed  CAS  Google Scholar 

  • Gu JL, Natarajan R, Ben-Ezra J et al (1994) Evidence that a leukocyte type of 12-lipoxygenase is expressed and regulated by angiotensin II in human adrenal glomerulosa cells. Endocrinology 134(1):70–77. doi:10.1210/endo.134.1.8275971

    PubMed  CAS  Google Scholar 

  • Guo L, Tang X, Chu X et al (2009) Role of protein kinase C in 15-HETE-induced hypoxic pulmonary vasoconstriction. Prostaglandins Leukot Essent Fatty Acids 80(2–3):115–123. doi:10.1016/j.plefa.2008.11.007

    Article  PubMed  CAS  Google Scholar 

  • Guo AM, Liu X, Al-Wahab Z et al (2011a) Role of 12-lipoxygenase in regulation of ovarian cancer cell proliferation and survival. Cancer Chemother Pharmacol 68(5):1273–1283. doi:10.1007/s00280-011-1595-y

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Zhang W, Giroux C et al (2011b) Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12-(S)-hydroxyeicosatetraenoic acid. J Biol Chem 286(39):33832–33840. doi:10.1074/jbc.M110.216564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo W, Sun J, Jiang L et al (2012) Imperatorin attenuates LPS-induced inflammation by suppressing NF-κB and MAPKs activation in RAW 264.7 macrophages. Inflammation 35(6):1764–1772. doi:10.1007/s10753-012-9495-9

    Article  PubMed  CAS  Google Scholar 

  • Hada T, Hagiya H, Suzuki H et al (1994) Arachidonate 12-lipoxygenase of rat pineal glands: catalytic properties and primary structure deduced from its cDNA. Biochim Biophys Acta 1211(2):221–228

    Article  PubMed  CAS  Google Scholar 

  • Hahn HS, Marreez Y, Odley A et al (2003) Protein kinase Cα negatively regulates systolic and diastolic function in pathological hypertrophy. Circ Res 93(11):1111–1119. doi:10.1161/01.RES.0000105087.79373.17

    Article  PubMed  CAS  Google Scholar 

  • Hammond VJ, Morgan AH, Lauder S et al (2012) Novel keto-phospholipids are generated by monocytes and macrophages, detected in cystic fibrosis, and activate peroxisome proliferator-activated receptor-gamma. J Biol Chem 287(50):41651–41666. doi:10.1074/jbc.M112.405407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Honda HM, Leitinger N, Frankel M et al (1999) Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites. Arterioscler Thromb Vasc Biol 19(3):680–686

    Article  PubMed  CAS  Google Scholar 

  • Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD (2002) Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39(2 Pt 2):690–694

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252(21):7610–7616

    PubMed  CAS  Google Scholar 

  • Jennings BL, Sahan-Firat S, Estes AM et al (2010) Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology. Hypertension 56(4):667–674. doi:10.1161/HYPERTENSIONAHA.110.154518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings BL, Anderson LJ, Estes AM et al (2012) Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice. Hypertension 59(2):348–354. doi:10.1161/HYPERTENSIONAHA.111.183301

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings BL, George LW, Pingili AK et al (2014a) Estrogen metabolism by cytochrome P450 1B1 modulates the hypertensive effect of angiotensin II in female mice. Hypertension 64(1):134–140. doi:10.1161/HYPERTENSIONAHA.114.03275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings BL, Montanez DE, May ME Jr et al (2014b) Cytochrome P450 1B1 contributes to increased blood pressure and cardiovascular and renal dysfunction in spontaneously hypertensive rats. Cardiovasc Drugs Ther 28(2):145–161. doi:10.1007/s10557-014-6510-4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jin X, He Y, Zhu M et al (2010) The relationship between the polymorphism of SG13S114 A/T in ALOX5AP gene and the vulnerability of carotid atherosclerosis in Chinese Han population. Int J Clin Exp Med 3(1):28–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jisaka M, Kim RB, Boeglin WE, Brash AR (2000) Identification of amino acid determinants of the positional specificity of mouse 8S-lipoxygenase and human 15S-lipoxygenase-2. J Biol Chem 275(2):1287–1293

    Article  PubMed  CAS  Google Scholar 

  • Kandouz M, Nie D, Pidgeon GP, Krishnamoorthy S, Maddipati KR, Honn KV (2003) Platelet-type 12-lipoxygenase activates NF-κB in prostate cancer cells. Prostaglandins Other Lipid Mediat 71(3–4):189–204

    Article  PubMed  CAS  Google Scholar 

  • Kang KH, Ling TY, Liou HH et al (2013) Enhancement role of host 12/15-lipoxygenase in melanoma progression. Eur J Cancer 49(12):2747–2759. doi:10.1016/j.ejca.2013.03.030

    Article  PubMed  CAS  Google Scholar 

  • Katoh T, Lakkis FG, Makita N, Badr KF (1994) Co-regulated expression of glomerular 12/15-lipoxygenase and interleukin-4 mRNAs in rat nephrotoxic nephritis. Kidney Int 46(2):341–349

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Knudsen D, Nordestgaard BG, Tybjaerg-Hansen A, Bojesen SE (2009) CYP1B1 genotype and risk of cardiovascular disease, pulmonary disease, and cancer in 50,000 individuals. Pharmacogenet Genomics 19(9):685–694. doi:10.1097/FPC.0b013e32833042cb

    Article  PubMed  CAS  Google Scholar 

  • Kauser K, Clark JE, Masters BS et al (1991) Inhibitors of cytochrome P-450 attenuate the myogenic response of dog renal arcuate arteries. Circ Res 68(4):1154–1163

    Article  PubMed  CAS  Google Scholar 

  • Kawano S, Kubota T, Monden Y et al (2005) Blockade of NF-κB ameliorates myocardial hypertrophy in response to chronic infusion of angiotensin II. Cardiovasc Res 67(4):689–698. doi:10.1016/j.cardiores.2005.04.030

    Article  PubMed  CAS  Google Scholar 

  • Kayama Y, Minamino T, Toko H et al (2009) Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206(7):1565–1574. doi:10.1084/jem.20082596

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kikuta Y, Kusunose E, Sumimoto H et al (1998) Purification and characterization of recombinant human neutrophil leukotriene B4 omega-hydroxylase (cytochrome P450 4F3). Arch Biochem Biophys 355(2):201–205. doi:10.1006/abbi.1998.0724

    Article  PubMed  CAS  Google Scholar 

  • Kikuta Y, Kusunose E, Kusunose M (2000) Characterization of human liver leukotriene B(4) omega-hydroxylase P450 (CYP4F2). J Biochem 127(6):1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Lee SB, Park SK, Kim HM, Park YI, Dong MS (2005) Effects of hydroxyl group numbers on the B-ring of 5,7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes. Arch Pharmacal Res 28(10):1114–1121

    Article  CAS  Google Scholar 

  • Koeners MP, Wesseling S, Ulu A et al (2011) Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300(4):E691–E698. doi:10.1152/ajpendo.00710.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kong EK, Huang Y, Sanderson JE, Chan KB, Yu S, Yu CM (2010) Baicalein and Wogonin inhibit collagen deposition in SHR and WKY cardiac fibroblast cultures. BMB Rep 43(4):297–303

    Article  PubMed  CAS  Google Scholar 

  • Kong EK, Yu S, Sanderson JE, Chen KB, Huang Y, Yu CM (2011) A novel anti-fibrotic agent, baicalein, for the treatment of myocardial fibrosis in spontaneously hypertensive rats. Eur J Pharmacol 658(2–3):175–181. doi:10.1016/j.ejphar.2011.02.033

    Article  PubMed  CAS  Google Scholar 

  • Korashy HM, El-Kadi AO (2006) The role of aryl hydrocarbon receptor in the pathogenesis of cardiovascular diseases. Drug Metab Rev 38(3):411–450. doi:10.1080/03602530600632063

    Article  PubMed  CAS  Google Scholar 

  • Kriska T, Cepura C, Magier D, Siangjong L, Gauthier KM, Campbell WB (2012) Mice lacking macrophage 12/15-lipoxygenase are resistant to experimental hypertension. Am J Physiol Heart Circ Physiol 302(11):H2428–H2438. doi:10.1152/ajpheart.01120.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kroll J, Epting D, Kern K et al (2009) Inhibition of Rho-dependent kinases ROCK I/II activates VEGF-driven retinal neovascularization and sprouting angiogenesis. Am J Physiol Heart Circ Physiol 296(3):H893–H899. doi:10.1152/ajpheart.01038.2008

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Prasad S, Sitasawad SL (2013) Multiple antioxidants improve cardiac complications and inhibit cardiac cell death in streptozotocin-induced diabetic rats. PLoS One 8(7):e67009. doi:10.1371/journal.pone.0067009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kwak HJ, Park KM, Choi HE, Lim HJ, Park JH, Park HY (2010) The cardioprotective effects of zileuton, a 5-lipoxygenase inhibitor, are mediated by COX-2 via activation of PKC delta. Cell Signal 22(1):80–87. doi:10.1016/j.cellsig.2009.09.014

    Article  PubMed  CAS  Google Scholar 

  • Lacape G, Daret D, Crockett R, Rigaud M, Larrue J (1992) Dual metabolic pathways of 12-HETE in rat aortic smooth muscle cells. Prostaglandins 44(3):167–176

    Article  PubMed  CAS  Google Scholar 

  • Lal H, Ahmad F, Zhou J et al (2014) Cardiac fibroblast glycogen synthase kinase-3beta regulates ventricular remodeling and dysfunction in ischemic heart. Circulation 130(5):419–430. doi:10.1161/CIRCULATIONAHA.113.008364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levick SP, Loch DC, Taylor SM, Janicki JS (2007) Arachidonic acid metabolism as a potential mediator of cardiac fibrosis associated with inflammation. J Immunol 178(2):641–646

    Article  PubMed  CAS  Google Scholar 

  • Leychenko A, Konorev E, Jijiwa M, Matter ML (2011) Stretch-induced hypertrophy activates NFkB-mediated VEGF secretion in adult cardiomyocytes. PLoS One 6(12):e29055. doi:10.1371/journal.pone.0029055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lindpaintner K, Kreutz R, Ganten D (1992) Genetic variation in hypertensive and ‘control’ strains. What are we controlling for anyway? Hypertension 19(5):428–430

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Khan WA, Hannun YA et al (1995) 12(S)-hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-alpha in melanoma cells: role of receptor-mediated hydrolysis of inositol phospholipids. Proc Natl Acad Sci USA 92(20):9323–9327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Q, Chen X, Macdonnell SM et al (2009) Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ Res 105(2):194–200. doi:10.1161/CIRCRESAHA.109.195313

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li-Weber M (2009) New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 35(1):57–68. doi:10.1016/j.ctrv.2008.09.005

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lazaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9(1):31–59

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Liu Y, Tang X, Ye H, Zhu D (2006) Role of 15-hydroxyeicosatetraenoic acid in phosphorylation of ERK1/2 and caldesmon in pulmonary arterial smooth muscle cells. Can J Physiol Pharmacol 84(10):1061–1069. doi:10.1139/y06-057

    Article  PubMed  CAS  Google Scholar 

  • Ma YH, Harder DR, Clark JE, Roman RJ (1991) Effects of 12-HETE on isolated dog renal arcuate arteries. Am J Physiol 261(2 Pt 2):H451–H456

    PubMed  CAS  Google Scholar 

  • Ma J, Liang S, Wang Z et al (2010) ROCK pathway participates in the processes that 15-hydroxyeicosatetraenoic acid (15-HETE) mediated the pulmonary vascular remodeling induced by hypoxia in rat. J Cell Physiol 222(1):82–94. doi:10.1002/jcp.21923

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Li Y, Ma J et al (2011) Key role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension. Hypertension 58(4):679–688. doi:10.1161/HYPERTENSIONAHA.111.171561

    Article  PubMed  CAS  Google Scholar 

  • Maayah ZH, El-Kadi AO (2015) 5-, 12- and 15-hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-κB-dependent mechanism. Arch Toxicol. doi:10.1007/s00204-014-1419-z

    Google Scholar 

  • Maayah ZH, Elshenawy OH, Althurwi HN, Abdelhamid G, El-Kadi AO (2015) Human fetal ventricular cardiomyocyte, RL-14 cell line, is a promising model to study drug metabolizing enzymes and their associated arachidonic acid metabolites. J Pharmacol Toxicol Methods 71:33–41. doi:10.1016/j.vascn.2014.11.005

    Article  PubMed  CAS  Google Scholar 

  • Malik KU, Jennings BL, Yaghini FA et al (2012) Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat 98(3–4):69–74. doi:10.1016/j.prostaglandins.2011.12.003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mammen JS, Kleiner HE, DiGiovanni J, Sutter TR, Strickland PT (2005) Coumarins are competitive inhibitors of cytochrome P450 1B1, with equal potency for allelic variants. Pharmacogenet Genomics 15(3):183–188

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ, Broekman MJ, Safier LB et al (1982) Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem Biophys Res Commun 109(1):130–137

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ, Safier LB, Ullman HL et al (1984) 12S,20-dihydroxyicosatetraenoic acid: a new icosanoid synthesized by neutrophils from 12S-hydroxyicosatetraenoic acid produced by thrombin- or collagen-stimulated platelets. Proc Natl Acad Sci USA 81(3):903–907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Masferrer JL, Rios AP, Schwartzman ML (1990) Inhibition of renal, cardiac and corneal (Na(+)–K+)ATPase by 12(R)-hydroxyeicosatetraenoic acid. Biochem Pharmacol 39(12):1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Maskrey BH, Bermudez-Fajardo A, Morgan AH et al (2007) Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. J Biol Chem 282(28):20151–20163. doi:10.1074/jbc.M611776200

    Article  PubMed  CAS  Google Scholar 

  • McFadyen MC, Cruickshank ME, Miller ID et al (2001a) Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer 85(2):242–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI (2001b) Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62(2):207–212

    Article  PubMed  CAS  Google Scholar 

  • Mitchell MD, Koenig JM (1991) Increased production of 15-hydroxyeicosatetraenoic acid by placentae from pregnancies complicated by pregnancy-induced hypertension. Prostaglandins Leukot Essent Fatty Acids 43(1):61–62

    Article  PubMed  CAS  Google Scholar 

  • Modesti PA, Serneri GG, Gamberi T et al (2008) Impaired angiotensin II—extracellular signal-regulated kinase signaling in failing human ventricular myocytes. J Hypertens 26(10):2030–2039. doi:10.1097/HJH.0b013e328308de68

    Article  PubMed  CAS  Google Scholar 

  • Mulugeta S, Suzuki T, Hernandez NT, Griesser M, Boeglin WE, Schneider C (2010) Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2. J Lipid Res 51(3):575–585. doi:10.1194/jlr.M001719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Murray GI, Melvin WT, Greenlee WF, Burke MD (2001) Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol 41:297–316

    Article  PubMed  CAS  Google Scholar 

  • Nadler JL, Natarajan R, Stern N (1987) Specific action of the lipoxygenase pathway in mediating angiotensin II-induced aldosterone synthesis in isolated adrenal glomerulosa cells. J Clin Investig 80(6):1763–1769. doi:10.1172/JCI113269

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakao J, Ooyama T, Ito H, Chang WC, Murota S (1982) Comparative effect of lipoxygenase products of arachidonic acid on rat aortic smooth muscle cell migration. Atherosclerosis 44(3):339–342

    Article  PubMed  CAS  Google Scholar 

  • Natarajan R, Gu JL, Rossi J et al (1993) Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells. Proc Natl Acad Sci USA 90(11):4947–4951

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Natarajan R, Gonzales N, Lanting L, Nadler J (1994) Role of the lipoxygenase pathway in angiotensin II-induced vascular smooth muscle cell hypertrophy. Hypertension 23(1 Suppl):I142–I147

    Article  PubMed  CAS  Google Scholar 

  • Natarajan R, Bai W, Rangarajan V et al (1996) Platelet-derived growth factor BB mediated regulation of 12-lipoxygenase in porcine aortic smooth muscle cells. J Cell Physiol 169(2):391–400. doi:10.1002/(SICI)1097-4652(199611)169:2<391:AID-JCP19>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  • Nazarewicz RR, Zenebe WJ, Parihar A et al (2007) 12(S)-hydroperoxyeicosatetraenoic acid (12-HETE) increases mitochondrial nitric oxide by increasing intramitochondrial calcium. Arch Biochem Biophys 468(1):114–120. doi:10.1016/j.abb.2007.09.018

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279(23):23847–23850

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101(8):2353–2364

    Article  PubMed  CAS  Google Scholar 

  • Nieves D, Moreno JJ (2006) Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth. J Lipid Res 47(12):2681–2689. doi:10.1194/jlr.M600212-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Nozawa K, Tuck ML, Golub M, Eggena P, Nadler JL, Stern N (1990) Inhibition of lipoxygenase pathway reduces blood pressure in renovascular hypertensive rats. Am J Physiol 259(6 Pt 2):H1774–H1780

    PubMed  CAS  Google Scholar 

  • O’Flaherty JT, Wykle RL, Redman J, Samuel M, Thomas M (1986) Metabolism of 5-hydroxyicosatetraenoate by human neutrophils: production of a novel omega-oxidized derivative. J Immunol 137(10):3277–3283

    PubMed  Google Scholar 

  • O’Flaherty JT, Rogers LC, Chadwell BA et al (2002) 5(S)-hydroxy-6,8,11,14-E, Z, Z, Z-eicosatetraenoate stimulates PC3 cell signaling and growth by a receptor-dependent mechanism. Cancer Res 62(23):6817–6819

    PubMed  Google Scholar 

  • Parmentier JH, Muthalif MM, Saeed AE, Malik KU (2001) Phospholipase D activation by norepinephrine is mediated by 12(s)-, 15(s)-, and 20-hydroxyeicosatetraenoic acids generated by stimulation of cytosolic phospholipase a2. tyrosine phosphorylation of phospholipase d2 in response to norepinephrine. J Biol Chem 276(19):15704–15711. doi:10.1074/jbc.M011473200

    Article  PubMed  CAS  Google Scholar 

  • Patricia MK, Kim JA, Harper CM et al (1999) Lipoxygenase products increase monocyte adhesion to human aortic endothelial cells. Arterioscler Thromb Vasc Biol 19(11):2615–2622

    Article  PubMed  CAS  Google Scholar 

  • Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2(2):138–144. doi:10.1161/CIRCHEARTFAILURE.108.839761

    Article  PubMed  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183. doi:10.1210/edrv.22.2.0428

    PubMed  CAS  Google Scholar 

  • Powell WS, Rokach J (2015) Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta 1851(4):340–355. doi:10.1016/j.bbalip.2014.10.008

    Article  PubMed  CAS  Google Scholar 

  • Powell WS, Gravelle F, Gravel S (1992) Metabolism of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid and other 5(S)-hydroxyeicosanoids by a specific dehydrogenase in human polymorphonuclear leukocytes. J Biol Chem 267(27):19233–19241

    PubMed  CAS  Google Scholar 

  • Prato M, Gallo V, Giribaldi G, Aldieri E, Arese P (2010) Role of the NF-κB transcription pathway in the haemozoin- and 15-HETE-mediated activation of matrix metalloproteinase-9 in human adherent monocytes. Cell Microbiol 12(12):1780–1791. doi:10.1111/j.1462-5822.2010.01508.x

    Article  PubMed  CAS  Google Scholar 

  • Quintana LF, Guzman B, Collado S, Claria J, Poch E (2006) A coding polymorphism in the 12-lipoxygenase gene is associated to essential hypertension and urinary 12(S)-HETE. Kidney Int 69(3):526–530. doi:10.1038/sj.ki.5000147

    Article  PubMed  CAS  Google Scholar 

  • Rao GN, Baas AS, Glasgow WC, Eling TE, Runge MS, Alexander RW (1994) Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J Biol Chem 269(51):32586–32591

    PubMed  CAS  Google Scholar 

  • Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R (2002) The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 277(12):9920–9928. doi:10.1074/jbc.M111305200

    Article  PubMed  CAS  Google Scholar 

  • Revermann M, Mieth A, Popescu L et al (2011) A pirinixic acid derivative (LP105) inhibits murine 5-lipoxygenase activity and attenuates vascular remodelling in a murine model of aortic aneurysm. Br J Pharmacol 163(8):1721–1732. doi:10.1111/j.1476-5381.2011.01321.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185. doi:10.1152/physrev.00021.2001

    Article  PubMed  CAS  Google Scholar 

  • Sadik CD, Sies H, Schewe T (2003) Inhibition of 15-lipoxygenases by flavonoids: structure-activity relations and mode of action. Biochem Pharmacol 65(5):773–781

    Article  PubMed  CAS  Google Scholar 

  • Sahan-Firat S, Jennings BL, Yaghini FA et al (2010) 2,3′,4,5′-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1. Am J Physiol Heart Circ Physiol 299(6):H1891–H1901. doi:10.1152/ajpheart.00655.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito F, Hori MT, Ideguchi Y et al (1992) 12-Lipoxygenase products modulate calcium signals in vascular smooth muscle cells. Hypertension 20(2):138–143

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Hori MT, Hino T, Golub MS, Tuck ML (1997) Elevated 12-lipoxygenase activity in the spontaneously hypertensive rat. Am J Hypertens 10(4 Pt 1):371–378

    PubMed  CAS  Google Scholar 

  • Schwartzman ML, Balazy M, Masferrer J, Abraham NG, McGiff JC, Murphy RC (1987) 12(R)-hydroxyicosatetraenoic acid: a cytochrome-P450-dependent arachidonate metabolite that inhibits Na+, K+-ATPase in the cornea. Proc Natl Acad Sci USA 84(22):8125–8129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwartzman ML, da Silva JL, Lin F, Nishimura M, Abraham NG (1996) Cytochrome P450 4A expression and arachidonic acid omega-hydroxylation in the kidney of the spontaneously hypertensive rat. Nephron 73(4):652–663

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73(3–4):141–162. doi:10.1016/j.plefa.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  • Shen T, Ma J, Zhang L et al (2013) Positive feedback-loop of telomerase reverse transcriptase and 15-lipoxygenase-2 promotes pulmonary hypertension. PLoS One 8(12):e83132. doi:10.1371/journal.pone.0083132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimada T, Fujii-Kuriyama Y (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Song YS, Kim MS, Lee DH, Oh DK, Yoon DY (2015) 15-Hydroxyeicosatetraenoic acid inhibits phorbol-12-myristate-13-Acetate-induced MUC5AC expression in NCI-H292 respiratory epithelial cells. J Microbiol Biotechnol 25(5):589–597

  • Sopontammarak S, Aliharoob A, Ocampo C, Arcilla RA, Gupta MP, Gupta M (2005) Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem Biophys 43(1):61–76. doi:10.1385/CBB:43:1:061

    Article  PubMed  CAS  Google Scholar 

  • Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176. doi:10.1161/CIRCRESAHA.109.209809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spanbroek R, Grabner R, Lotzer K et al (2003) Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis. Proc Natl Acad Sci USA 100(3):1238–1243. doi:10.1073/pnas.242716099

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stenson WF, Parker CW (1979) Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids. J Clin Investig 64(5):1457–1465. doi:10.1172/JCI109604

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stern N, Golub M, Nozawa K et al (1989) Selective inhibition of angiotensin II-mediated vasoconstriction by lipoxygenase blockade. Am J Physiol 257(2 Pt 2):H434–H443

    PubMed  CAS  Google Scholar 

  • Stern N, Kisch ES, Knoll E (1996) Platelet lipoxygenase in spontaneously hypertensive rats. Hypertension 27(5):1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Stoltz RA, Abraham NG, Laniado-Schwartzman M (1996) The role of NF-κB in the angiogenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci USA 93(7):2832–2837

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sutter TR, Tang YM, Hayes CL et al (1994) Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J Biol Chem 269(18):13092–13099

    PubMed  CAS  Google Scholar 

  • Suzuki H, Kayama Y, Sakamoto M et al (2015) Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 64(2):618–630. doi:10.2337/db13-1896

    Article  PubMed  CAS  Google Scholar 

  • Szekeres CK, Tang K, Trikha M, Honn KV (2000) Eicosanoid activation of extracellular signal-regulated kinase1/2 in human epidermoid carcinoma cells. J Biol Chem 275(49):38831–38841. doi:10.1074/jbc.M002673200

    Article  PubMed  CAS  Google Scholar 

  • Takai S, Jin D, Kirimura K, Fujimoto Y, Miyazaki M (2001) 12-Hydroxyeicosatetraenoic acid potentiates angiotensin II-induced pressor response in rats. Eur J Pharmacol 418(1–2):R1–R2

    Article  PubMed  CAS  Google Scholar 

  • Tang DG, Renaud C, Stojakovic S, Diglio CA, Porter A, Honn KV (1995) 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: its potential role in angiogenesis. Biochem Biophys Res Commun 211(2):462–468. doi:10.1006/bbrc.1995.1836

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Scheef EA, Wang S et al (2009) CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. Blood 113(3):744–754. doi:10.1182/blood-2008-03-145219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tejera N, Boeglin WE, Suzuki T, Schneider C (2012) COX-2-dependent and -independent biosynthesis of dihydroxy-arachidonic acids in activated human leukocytes. J Lipid Res 53(1):87–94. doi:10.1194/jlr.M017822

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thomas CP, Morgan LT, Maskrey BH et al (2010) Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem 285(10):6891–6903. doi:10.1074/jbc.M109.078428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thorburn J, McMahon M, Thorburn A (1994) Raf-1 kinase activity is necessary and sufficient for gene expression changes but not sufficient for cellular morphology changes associated with cardiac myocyte hypertrophy. J Biol Chem 269(48):30580–30586

    PubMed  CAS  Google Scholar 

  • Tofovic SP, Jones TJ, Bilan VP, Jackson EK, Petrusevska G (2010) Synergistic therapeutic effects of 2-methoxyestradiol with either sildenafil or bosentan on amelioration of monocrotaline-induced pulmonary hypertension and vascular remodeling. J Cardiovasc Pharmacol 56(5):475–483. doi:10.1097/FJC.0b013e3181f215e7

    Article  PubMed  CAS  Google Scholar 

  • Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy. Am Heart J 141(3):334–341. doi:10.1067/mhj.2001.113218

    Article  PubMed  CAS  Google Scholar 

  • Vonach C, Viola K, Giessrigl B et al (2011) NF-κB mediates the 12(S)-HETE-induced endothelial to mesenchymal transition of lymphendothelial cells during the intravasation of breast carcinoma cells. Br J Cancer 105(2):263–271. doi:10.1038/bjc.2011.194

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Walisser JA, Glover E, Pande K, Liss AL, Bradfield CA (2005) Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. Proc Natl Acad Sci USA 102(49):17858–17863

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wallukat G, Morwinski R, Kuhn H (1994) Modulation of the beta-adrenergic response of cardiomyocytes by specific lipoxygenase products involves their incorporation into phosphatidylinositol and activation of protein kinase C. J Biol Chem 269(46):29055–29060

    PubMed  CAS  Google Scholar 

  • Wang B, Zhou SF (2009) Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem 16(31):4066–4218

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Li W, Lu X, Bao P, Zhao X (2012) Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complicat 26(4):259–265. doi:10.1016/j.jdiacomp.2012.04.007

    Article  PubMed  Google Scholar 

  • Wang AW, Song L, Miao J et al (2015) Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice. Am J Hypertens 28(4):518–526. doi:10.1093/ajh/hpu194

    Article  PubMed  Google Scholar 

  • Watanabe T, Medina JF, Haeggstrom JZ, Radmark O, Samuelsson B (1993) Molecular cloning of a 12-lipoxygenase cDNA from rat brain. Eur J Biochem FEBS 212(2):605–612

    Article  CAS  Google Scholar 

  • Wen Y, Gu J, Liu Y, Wang PH, Sun Y, Nadler JL (2001) Overexpression of 12-lipoxygenase causes cardiac fibroblast cell growth. Circ Res 88(1):70–76

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Gu J, Peng X, Zhang G, Nadler J (2003) Overexpression of 12-lipoxygenase and cardiac fibroblast hypertrophy. Trends Cardiovasc Med 13(4):129–136

    Article  PubMed  CAS  Google Scholar 

  • Wetsel WC, Khan WA, Merchenthaler I et al (1992) Tissue and cellular distribution of the extended family of protein kinase C isoenzymes. J Cell Biol 117(1):121–133

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw ML, Gustafsson JA, Poellinger L (1994) Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Mol Cell Biol 14(12):8343–8355

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu CC, Schwartzman ML (2011) The role of 20-HETE in androgen-mediated hypertension. Prostaglandins Other Lipid Mediat 96(1–4):45–53. doi:10.1016/j.prostaglandins.2011.06.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu ZG, Yuan H, Lanting L et al (2008) Products of 12/15-lipoxygenase upregulate the angiotensin II receptor. J Am Soci Nephrol 19(3):559–569. doi:10.1681/ASN.2007080939

    Article  CAS  Google Scholar 

  • Yaghini FA, Li F, Malik KU (2007) Expression and mechanism of spleen tyrosine kinase activation by angiotensin II and its implication in protein synthesis in rat vascular smooth muscle cells. J Biol Chem 282(23):16878–16890. doi:10.1074/jbc.M610494200

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S (1992) Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta 1128(2–3):117–131

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Huang H, Tang QZ et al (2010) Breviscapine protects against cardiac hypertrophy through blocking PKC-α-dependent signaling. J Cell Biochem 109(6):1158–1171. doi:10.1002/jcb.22495

    PubMed  CAS  Google Scholar 

  • Yiu SS, Zhao X, Inscho EW, Imig JD (2003) 12-Hydroxyeicosatetraenoic acid participates in angiotensin II afferent arteriolar vasoconstriction by activating L-type calcium channels. J Lipid Res 44(12):2391–2399. doi:10.1194/jlr.M300183-JLR200

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama C, Shinjo F, Yoshimoto T, Yamamoto S, Oates JA, Brash AR (1986) Arachidonate 12-lipoxygenase purified from porcine leukocytes by immunoaffinity chromatography and its reactivity with hydroperoxyeicosatetraenoic acids. J Biol Chem 261(35):16714–16721

    PubMed  CAS  Google Scholar 

  • Yousif MH, Benter IF, Roman RJ (2009) Cytochrome P450 metabolites of arachidonic acid play a role in the enhanced cardiac dysfunction in diabetic rats following ischaemic reperfusion injury. Auton Autacoid Pharmacol 29(1–2):33–41. doi:10.1111/j.1474-8673.2009.00429.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan W, Yu Y, Li J et al (2013) Estrogen metabolite 2-methoxyestradiol prevents hypertension in deoxycorticosterone acetate-salt rats. Cardiovasc Drugs Ther 27(1):17–22. doi:10.1007/s10557-012-6428-7

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Cao Y, Duan H, Wang H, He L (2012) Imperatorin prevents cardiac hypertrophy and the transition to heart failure via NO-dependent mechanisms in mice. Fitoterapia 83(1):60–66. doi:10.1016/j.fitote.2011.09.011

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li Y, Chen M et al (2014) 15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-beta. J Cell Physiol 229(2):245–257. doi:10.1002/jcp.24443

    Article  PubMed  CAS  Google Scholar 

  • Zong J, Zhang DP, Zhou H et al (2013) Baicalein protects against cardiac hypertrophy through blocking MEK-ERK1/2 signaling. J Cell Biochem 114(5):1058–1065. doi:10.1002/jcb.24445

    Article  PubMed  CAS  Google Scholar 

  • Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125(3):446–463. doi:10.1016/j.pharmthera.2009.12.002

    Article  PubMed  CAS  Google Scholar 

  • Zordoky BN, Aboutabl ME, El-Kadi AO (2008) Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos 36(11):2277–2286. doi:10.1124/dmd.108.023077

    Article  PubMed  CAS  Google Scholar 

  • Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO (2010) Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol 242(1):38–46. doi:10.1016/j.taap.2009.09.012

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research [Grant 106665] to A.O.S.E. Z.H.M. is the recipient Izaak Walton Killam Memorial Scholarship and Alberta Innovates-Health solution Graduate Student Scholarship. The authors are grateful to Samya Elkhatali for her helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman O. S. El-Kadi.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maayah, Z.H., El-Kadi, A.O.S. The role of mid-chain hydroxyeicosatetraenoic acids in the pathogenesis of hypertension and cardiac hypertrophy. Arch Toxicol 90, 119–136 (2016). https://doi.org/10.1007/s00204-015-1620-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1620-8

Keywords

Navigation