Skip to main content
Log in

Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Perfluorododecanoic acid (PFDoA) is a ubiquitous environmental pollutant known to cause hepatocellular hypertrophy; however, the mechanisms of hepatotoxicity remain poorly understood. In this study, male rats were exposed to 0, 0.05, 0.2 and 0.5 mg/kg/day of PFDoA for 110 days. After two-dimensional differential gel electrophoresis and MALDI-TOF/TOF analysis, 73 differentially expressed proteins involved in lipid metabolism, inflammation, stress response and other functions were successfully identified. Among them, six significantly changed proteins (CTE1, MTE1, HADHA, ECH1, ALDH2 and CPS1) were found to be regulated by peroxisome proliferator-activated receptor alpha (PPARα). The anti-oxidant enzyme activity assays of superoxide dismutase and glutathione peroxidase and the content of thiobarbituric acid-reactive substances in the liver implied that PFDoA caused oxidative stress. The mRNA levels of PPARα in rat primary hepatocytes were knocked down by lentivirus-mediated RNAi. Furthermore, targeted protein levels of CTE1 and MTE1 were down-regulated, while those of HADHA, ALDH2 and CPS1 were up-regulated. After PFDoA exposure, however, the targeted protein levels of CTE1 and ALDH2 increased compared with those of the knockdown untreated group. The reactive oxygen species (ROS) content in rat hepatocytes assayed by flow cytometry significantly increased in the PPARα knockdown groups, consistent with the PPARα antagonist GW6471- and agonist WY14643-treated groups. These results strongly suggested that PPARα played an important role in suppressing ROS content in hepatocytes following PFDoA exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CTE1:

Cytosolic acyl-CoA thioesterase 1, also known as Acot1 (acyl-CoA thioesterase 1)

MTE1:

Mitochondrial acyl-CoA thioesterase 1, also known as Acot2 (acyl-CoA thioesterase 2)

HADHA:

Hydroxyacyl-coenzyme A dehydrogenase/3-ketoacyl-coenzyme A thiolase/enoyl-coenzyme A hydratase (trifunctional protein), alpha subunit

ALDH2:

Aldehyde dehydrogenase 2 family (mitochondrial)

ECH1:

Enoyl CoA hydratase 1, peroxisomal

CPS1:

Carbamoyl-phosphate synthetase 1

SOD:

Superoxide dismutase

GPx:

Glutathione peroxidase

TBARS:

Thiobarbituric acid-reactive substances

References

  • Abbott BD, Wolf CJ, Das KP et al (2009) Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol (Elmsford, NY) 27(3–4):258–265. doi:10.1016/j.reprotox.2008.05.061

    Article  CAS  Google Scholar 

  • Alban A, David SO, Bjorkesten L et al (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44

    Article  CAS  PubMed  Google Scholar 

  • Anderson SP, Yoon L, Richard EB, Dunn CS, Cattley RC, Corton JC (2002) Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice. Hepatology 36(3):544–554. doi:10.1053/jhep.2002.35276

    Article  CAS  PubMed  Google Scholar 

  • Bjork JA, Butenhoff JL, Wallace KB (2011) Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288(1–3):8–17. doi:10.1016/j.tox.2011.06.012

    Article  CAS  PubMed  Google Scholar 

  • Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL (2007) Polyfluoroalkyl chemicals in the US population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect 115(11):1596–1602. doi:10.1289/ehp.10598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Hennig GE, Whiteley HE, Corton JC, Manautou JE (2000) Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol Sci 57(2):338–344

    Article  CAS  PubMed  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5):649–688

    CAS  PubMed  Google Scholar 

  • DeWitt JC, Shnyra A, Badr MZ et al (2009) Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Crit Rev Toxicol 39(1):76–94

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Hao F, Shi Z et al (2009) Systems biological responses to chronic perfluorododecanoic acid exposure by integrated metabonomic and transcriptomic studies. J Proteome Res 8(6):2882–2891. doi:10.1021/pr9000256

    Article  CAS  PubMed  Google Scholar 

  • Dinglasan JA, Bailey M, Park JB, Dhirani AA (2004) Differential conductance switching of planar tunnel junctions mediated by oxidation/reduction of functionally protected ferrocene. J Am Chem Soc 126(20):6491–6497. doi:10.1021/ja0394176

    Article  CAS  PubMed  Google Scholar 

  • Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL (2012) Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARalpha and CAR/PXR. Toxicology 293(1–3):16–29. doi:10.1016/j.tox.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  • Eriksen KT, Raaschou-Nielsen O, Sorensen M, Roursgaard M, Loft S, Moller P (2010) Genotoxic potential of the perfluorinated chemicals PFOA, PFOS, PFBS, PFNA and PFHxA in human HepG2 cells. Mutat Res 700(1–2):39–43. doi:10.1016/j.mrgentox.2010.04.024

    Article  CAS  PubMed  Google Scholar 

  • Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10(4):355–361. doi:10.1038/nm1025

    Article  CAS  PubMed  Google Scholar 

  • Fujii Y, Yan J, Harada KH et al (2012) Levels and profiles of long-chain perfluorinated carboxylic acids in human breast milk and infant formulas in East Asia. Chemosphere 86(3):315–321. doi:10.1016/j.chemosphere.2011.10.035

    Article  CAS  PubMed  Google Scholar 

  • Giesy JP, Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 35(7):1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Gorrochategui E, Perez-Albaladejo E, Casas J, Lacorte S, Porte C (2014) Perfluorinated chemicals: differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells. Toxicol Appl Pharmacol 277(2):124–130. doi:10.1016/j.taap.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  • Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001) Compound-specific, quantitative characterization of organic fluorochemicals in biological matrices. Environ Sci Technol 35(4):766–770

    Article  CAS  PubMed  Google Scholar 

  • Houde M, Martin JW, Letcher RJ, Solomon KR, Muir DC (2006) Biological monitoring of polyfluoroalkyl substances: a review. Environ Sci Technol 40(11):3463–3473

    Article  CAS  PubMed  Google Scholar 

  • Houde M, De Silva AO, Muir DC, Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 45(19):7962–7973. doi:10.1021/es104326w

    Article  CAS  PubMed  Google Scholar 

  • Hundley SG, Sarrif AM, Kennedy GL (2006) Absorption, distribution, and excretion of ammonium perfluorooctanoate (APFO) after oral administration to various species. Drug Chem Toxicol 29(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Hunt MC, Lindquist PJ, Peters JM, Gonzalez FJ, Diczfalusy U, Alexson SE (2000) Involvement of the peroxisome proliferator-activated receptor alpha in regulating long-chain acyl-CoA thioesterases. J Lipid Res 41(5):814–823

    CAS  PubMed  Google Scholar 

  • Ishii T, Warabi E, Yanagawa T (2012) Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J Clin Biochem Nutr 50(2):91–105. doi:10.3164/jcbn.11-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature 405(6785):421–424. doi:10.1038/35013000

    Article  CAS  PubMed  Google Scholar 

  • Kleszczynski K, Gardzielewski P, Mulkiewicz E, Stepnowski P, Skladanowski AC (2007) Analysis of structure–cytotoxicity in vitro relationship (SAR) for perfluorinated carboxylic acids. Toxicol In Vitro 21(6):1206–1211. doi:10.1016/j.tiv.2007.04.020

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Suzuki E, Katakura M, Ohmori K, Noshiro R, Kawashima Y (2001) Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats. Chem Biol Interact 134(2):203–216

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Suzuki-Nakajima E, Mitsumoto A, Kawashima Y (2006) Responses of the liver to perfluorinated fatty acids with different carbon chain length in male and female mice: in relation to induction of hepatomegaly, peroxisomal beta-oxidation and microsomal 1-acylglycerophosphocholine acyltransferase. Biol Pharm Bull 29(9):1952–1957

    Article  CAS  PubMed  Google Scholar 

  • Lam NH, Cho CR, Lee JS et al (2014) Perfluorinated alkyl substances in water, sediment, plankton and fish from Korean rivers and lakes: a nationwide survey. Sci Total Environ 491–492:154–162. doi:10.1016/j.scitotenv.2014.01.045

    Article  PubMed  Google Scholar 

  • Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99(2):366–394. doi:10.1093/toxsci/kfm128

    Article  CAS  PubMed  Google Scholar 

  • Lin AY, Panchangam SC, Tsai YT, Yu TH (2014) Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environ Monit Assess 186(5):3265–3275. doi:10.1007/s10661-014-3617-9

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yu K, Shi X et al (2007) Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat Toxicol (Amsterdam, Neth) 82(2):135–143. doi:10.1016/j.aquatox.2007.02.006

    Article  CAS  Google Scholar 

  • Liu W, Chen S, Quan X, Jin YH (2008) Toxic effect of serial perfluorosulfonic and perfluorocarboxylic acids on the membrane system of a freshwater alga measured by flow cytometry. Environ Toxicol Chem 27(7):1597–1604. doi:10.1897/07-459

    Article  CAS  PubMed  Google Scholar 

  • Liu CP, Fu J, Xu FP, Wang XS, Li S (2015) The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals 28(1):163–173. doi:10.1007/s10534-014-9812-x

    Article  CAS  PubMed  Google Scholar 

  • Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61(4):393–416. doi:10.1007/s00018-003-3216-3

    Article  CAS  PubMed  Google Scholar 

  • Martin JW, Mabury SA, Solomon KR, Muir DC (2003) Bioconcentration and tissue distribution of perfluorinated acids in rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 22(1):196–204

    Article  CAS  PubMed  Google Scholar 

  • Martin JW, Smithwick MM, Braune BM, Hoekstra PF, Muir DC, Mabury SA (2004) Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environ Sci Technol 38(2):373–380

    Article  CAS  PubMed  Google Scholar 

  • Mehendale HM (2000) PPAR-alpha: a key to the mechanism of hepatoprotection by clofibrate. Toxicol Sci 57(2):187–190

    Article  CAS  PubMed  Google Scholar 

  • Minata M, Harada KH, Karrman A et al (2010) Role of peroxisome proliferator-activated receptor-alpha in hepatobiliary injury induced by ammonium perfluorooctanoate in mouse liver. Ind Health 48(1):96–107

    Article  CAS  PubMed  Google Scholar 

  • Naile JE, Khim JS, Wang T et al (2010) Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. Environ Pollut 158(5):1237–1244. doi:10.1016/j.envpol.2010.01.023

    Article  CAS  PubMed  Google Scholar 

  • Nemali MR, Reddy MK, Usuda N et al (1989) Differential induction and regulation of peroxisomal enzymes: predictive value of peroxisome proliferation in identifying certain nonmutagenic carcinogens. Toxicol Appl Pharmacol 97(1):72–87

    Article  CAS  PubMed  Google Scholar 

  • Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19(16):2155–2157. doi:10.1093/bioinformatics/btg290

    Article  CAS  PubMed  Google Scholar 

  • Ogi S, Tanji N, Iseda T, Yokoyama M (1999) Expression of heat shock proteins in developing and degenerating rat testes. Arch Androl 43(3):163–171

    Article  CAS  PubMed  Google Scholar 

  • Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184(2–3):135–140

    Article  CAS  PubMed  Google Scholar 

  • Reistad T, Fonnum F, Mariussen E (2013) Perfluoroalkylated compounds induce cell death and formation of reactive oxygen species in cultured cerebellar granule cells. Toxicol Lett 218(1):56–60. doi:10.1016/j.toxlet.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Vallanat B, Nelson DM et al (2009) Evidence for the involvement of xenobiotic-responsive nuclear receptors in transcriptional effects upon perfluoroalkyl acid exposure in diverse species. Reprod Toxicol 27(3–4):266–277. doi:10.1016/j.reprotox.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  • Rich CD, Blaine AC, Hundal L, Higgins CP (2015) Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils. Environ Sci Technol. doi:10.1021/es504152d

    PubMed  Google Scholar 

  • Rosen ED, Sarraf P, Troy AE et al (1999) PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Abbott BD, Wolf DC et al (2008a) Gene profiling in the livers of wild-type and PPARalpha-null mice exposed to perfluorooctanoic acid. Toxicol Pathol 36(4):592–607. doi:10.1177/0192623308318208

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Lee JS, Ren H et al (2008b) Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci 103(1):46–56. doi:10.1093/toxsci/kfn025

    Article  CAS  PubMed  Google Scholar 

  • Rosen MB, Schmid JR, Corton JC et al (2010) Gene expression profiling in wild-type and PPARalpha-null mice exposed to perfluorooctane sulfonate reveals PPARalpha-independent effects. PPAR Res 2010. doi:10.1155/2010/794739

  • Seacat AM, Thomford PJ, Hansen KJ et al (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183(1–3):117–131

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. Methods Cell Biol 13:29–83

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K (2007) Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bull Environ Contam Toxicol 79(4):427–431. doi:10.1007/s00128-007-9243-2

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Hillebrand A, Wang DQ, Liu M (2012) Isolation and primary culture of rat hepatic cells. J Vis Exp (JoVE) (64). doi:10.3791/3917

  • Shipley JM, Hurst CH, Tanaka SS et al (2004) trans-activation of PPARalpha and induction of PPARalpha target genes by perfluorooctane-based chemicals. Toxicol Sci 80(1):151–160. doi:10.1093/toxsci/kfh130

    Article  CAS  PubMed  Google Scholar 

  • Takacs ML, Abbott BD (2007) Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci 95(1):108–117. doi:10.1093/toxsci/kfl135

    Article  CAS  PubMed  Google Scholar 

  • Taniyasu S, Kannan K, So MK et al (2005) Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. J Chromatogr A 1093(1–2):89–97. doi:10.1016/j.chroma.2005.07.053

    Article  CAS  PubMed  Google Scholar 

  • Thingholm TE, Larsen MR, Ingrell CR, Kassem M, Jensen ON (2008) TiO2-based phosphoproteomic analysis of the plasma membrane and the effects of phosphatase inhibitor treatment. J Proteome Res 7(8):3304–3313. doi:10.1021/pr800099y

    Article  CAS  PubMed  Google Scholar 

  • Wetmore BA, Merrick BA (2004) Toxicoproteomics: proteomics applied to toxicology and pathology. Toxicol Pathol 32(6):619–642

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Ding Y, Sasaguri Y (2012) Peroxiredoxin 4: critical roles in inflammatory diseases. J UOEH 34(1):27–39

    CAS  PubMed  Google Scholar 

  • Yang B, Zou W, Hu Z et al (2014) Involvement of oxidative stress and inflammation in liver injury caused by perfluorooctanoic acid exposure in mice. Biomed Res Int 2014:409837. doi:10.1155/2014/409837

    PubMed  PubMed Central  Google Scholar 

  • Yeldandi AV, Rao MS, Reddy JK (2000) Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat Res 448(2):159–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Shi Z, Liu Y, Wei Y, Dai J (2008) Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol Appl Pharmacol 227(1):16–25. doi:10.1016/j.taap.2007.09.026

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ding L, Fang X et al (2011) Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies. PLoS One 6(6):e20862. doi:10.1371/journal.pone.0020862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liu Y, Zhang H, Dai J (2012) Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid. Environ Int 42:20–30. doi:10.1016/j.envint.2011.03.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB14040202) and the National Natural Science Foundation of China (Grants Nos. 31320103915, 21277143 and 21377128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Dai.

Additional information

Hui Liu and Hongxia Zhang have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, H., Cui, R. et al. Activation of peroxisome proliferator-activated receptor α ameliorates perfluorododecanoic acid-induced production of reactive oxygen species in rat liver. Arch Toxicol 90, 1383–1397 (2016). https://doi.org/10.1007/s00204-015-1559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1559-9

Keywords

Navigation