Skip to main content
Log in

Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials

  • Review
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Materials that can be described as respirable granular biodurable particles without known significant specific toxicity (GBP) show a common mode of toxicological action that is characterized by inflammation and carcinogenicity in chronic inhalation studies in the rat. This study was carried out to compare the carcinogenic potency of GBP nanomaterials (primary particle diameter 1–100 nm) to GBP micromaterials (primary particle diameter >100 nm) in a pooled approach. For this purpose, the positive GBP rat inhalation carcinogenicity studies have been evaluated. Inhalation studies on diesel engine emissions have also been included due to the fact that the mode of carcinogenic action is assumed to be the same. As it is currently not clear which dose metrics may best explain carcinogenic potency, different metrics have been considered. Cumulative exposure concentrations related to mass, surface area, and primary particle volume have been included as well as cumulative lung burden metrics related to mass, surface area, and primary particle volume. In total, 36 comparisons have been conducted. Including all dose metrics, GBP nanomaterials were 1.33- to 1.69-fold (mean values) and 1.88- to 3.54-fold (median values) more potent with respect to carcinogenicity than GBP micromaterials, respectively. Nine of these 36 comparisons showed statistical significance (p < 0.05, U test), all of which related to dose metrics based on particle mass. The maximum comparative potency factor obtained for one of these 9 dose metric comparisons based on particle mass was 4.71. The studies with diesel engine emissions did not have a major impact on the potency comparison. The average duration of the carcinogenicity studies with GBP nanomaterials was 4 months longer (median values 30 vs. 26 months) than the studies with GBP micromaterials, respectively. Tumor rates increase with age and lung tumors in the rat induced by GBP materials are known to appear late, that is, mainly after study durations longer than 24 months. Taking the different study durations into account, the real potency differences were estimated to be twofold lower than the relative potency factors identified. In conclusion, the chronic rat inhalation studies with GBP materials indicate that the difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials is low can be described by a factor of 2–2.5 referring to the dose metrics mass concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GBP:

Respirable granular biodurable particles without known significant specific toxicity

CKSL:

Cystic keratinizing squamous lesions

DEE:

Diesel engine emissions

CB:

Carbon black

References

  • AGS (2001) Ausschuss fuer Gefahrstoffe (AGS, German Committee on Hazardous Substances). German General Dust OEL. http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/pdf/900/900-allgemeiner-staubgrenzwert.pdf?__blob=publicationFile

  • Baan RA (2007) Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC monographs working group. Inhal Toxicol 19(Suppl 1):213–228

    Article  PubMed  CAS  Google Scholar 

  • Bellmann B, Muhle H, Creutzenberg O, Dasenbrock C, Kilpper R, MacKenzie JC, Morrow P, Mermelstein R (1991) Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. Fundam Appl Toxicol 17:300–313

    Article  PubMed  CAS  Google Scholar 

  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI (2002) Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci 70:86–97

    Article  PubMed  CAS  Google Scholar 

  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI (2004) Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357

    Article  PubMed  CAS  Google Scholar 

  • Boorman GA, Brockmann M, Carlton WW, Davis JM, Dungworth DL, Hahn FF, Mohr U, Reichhelm HB, Turusov VS, Wagner BM (1996) Classification of cystic keratinizing squamous lesions of the rat lung: report of a workshop. Toxicol Pathol 24:564–572

    Article  PubMed  CAS  Google Scholar 

  • Brightwell J, Fouillet X, Cassano-Zoppi AL, Bernstein D, Crawley F, Duchosal F, Gatz R, Perczel S, Pfeifer H (1989) Tumours of the respiratory tract in rats and hamsters following chronic inhalation of engine exhaust emissions. J Appl Toxicol 9:23–31

    Article  PubMed  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Cheng YS, Yeh HC, Mauderly JL, Mokler BV (1984) Characterization of diesel exhaust in a chronic inhalation study. Am Ind Hyg Assoc J 45:547–555

    Article  PubMed  CAS  Google Scholar 

  • Dankovic D, Kuempel E, Wheeler M (2007) An approach to risk assessment for TiO2. Inhal Toxicol 19(Suppl 1):205–212

    Article  PubMed  CAS  Google Scholar 

  • Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G (2005) Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci 88:614–629

    Article  PubMed  CAS  Google Scholar 

  • Ferin J, Oberdörster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6:535–542

    PubMed  CAS  Google Scholar 

  • Hebisch R, Dabill D, Dahmann D, Diebold F, Geiregat N, Grosjean R, Mattenklott M, Perret V, Guillemin M (2003) Sampling and analysis of carbon in diesel exhaust particulates–an international comparison. Int Arch Occup Environ Health 76:137–142

    PubMed  CAS  Google Scholar 

  • Heinrich U, Muhle H, Takenaka S, Ernst H, Fuhst R, Mohr U, Pott F, Stoeber W (1986) Chronic effects on the respiratory tract of hamsters, mice and rats after long-term inhalation of high concentrations of filtered and unfiltered diesel engine emissions. J Appl Toxicol 6:383–395

    Article  PubMed  CAS  Google Scholar 

  • Heinrich U, Dungworth DL, Pott F, Peters L, Dasenbrock C, Levsen K, Koch W, Creutzenberg O, Schulte A (1994) The carcinogenic effects of carbon black particles and tar-pitch condensation aerosol after inhalation exposure of rats. Ann Occup Hyg 38:351–356

    Article  Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7:533–556

    Article  CAS  Google Scholar 

  • Hext PM, Tomenson JA, Thompson P (2005) Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg 49:461–472

    Article  PubMed  CAS  Google Scholar 

  • ILSI (2000) The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. ILSI risk science institute workshop participants. Inhal Toxicol 12(1–2):1–17

    Google Scholar 

  • Ishinishi N, Kuwabara N, Nagase S, Suzuki T, Ishiwata S, Kohno T (1986) Long-term inhalation studies on effects of exhaust from heavy and light duty diesel engines on F344 rats. Dev Toxicol Environ Sci 13:329–348

    PubMed  CAS  Google Scholar 

  • ISO (2008) International Organization for Standardization ISO/TS27687. Nanotechnologies–terminology and definitions for nano-objects–nanoparticle, nanofibre and nanoplate. http://www.iso.org/iso/catalogue_detail?csnumber=44278.

  • Iwai K, Udagawa T, Yamagishi M, Yamada H (1986) Long-term inhalation studies of diesel exhaust on F344 SPF rats. Incidence of lung cancer and lymphoma. Dev Toxicol Environ Sci 13:349–360

    PubMed  CAS  Google Scholar 

  • Iwai K, Higuchi K, Udagawa T, Ohtomo K, Kawabata Y (1997) Lung tumor induced by long-term inhalation or intratracheal instillation of diesel exhaust particles. Exp Toxicol Pathol 49:393–401

    Article  PubMed  CAS  Google Scholar 

  • Iwai K, Adachi S, Takahashi M, Moller L, Udagawa T, Mizuno S, Sugawara I (2000) Early oxidative DNA damages and late development of lung cancer in diesel exhaust-exposed rats. Environ Res 84:255–264

    Article  PubMed  CAS  Google Scholar 

  • Kawabata Y, Udagawa T, Higuchi K, Yamada H, Iwai K (1994) Early 1-year exposure to diesel exhaust causes lung cancer in rats. In: Mohr U, Dungworth DL, Mauderly JL, Oberdoerster G (eds) Toxic and carcinogenic effects of solid particles in the respiratory tract. ILSI Press, Washington, DC

    Google Scholar 

  • Kuempel ED, Smith RJ, Dankovic DA, Stayner LT (2010) Rat- and human-based risk estimates of lung cancer from occupational exposure to poorly-soluble particles: a quantitative evaluation. J Phys: Conf Ser 151:356–378

    Google Scholar 

  • Lee KP, Trochimowicz HJ, Reinhardt CF (1985) Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for 2 years. Toxicol Appl Pharmacol 79:179–192

    Article  PubMed  CAS  Google Scholar 

  • Lee KP, Henry NW, Trochimowicz HJ, Reinhardt CF (1986) Pulmonary response to impaired lung clearance in rats following excessive TiO2 dust deposition. Environ Res 41:144

    Article  PubMed  CAS  Google Scholar 

  • Martin JC, Daniel H, LeBouffant L (1977) Short- and long-term experimental study of the toxicity of coal-mine dust and of some of its constituents. In: Walton WH (ed) Inhaled particles, vol IV. Pergamon Press, Oxford, pp 361–370

    Google Scholar 

  • Mattenklott M, Bagschick U, Chromy W, Dahmann D, Kieser D, Rietschel P, Schwalb J, Sinner K-E, Stückrath M, Van Gelder R, Wilms V (2002) Dieselmotoremissionen am Arbeitsplatz. Gefahrstoffe-Reinhaltung der Luft 62:13–23

    CAS  Google Scholar 

  • Mauderly JL (1997) Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk. Environ Health Perspect 105(Suppl 5):1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Mauderly JL, Jones RK, Griffith WC, Henderson RF, McClellan RO (1987) Diesel exhaust is a pulmonary carcinogen in rats exposed chronically by inhalation. Fundam Appl Toxicol 9:208–221

    Article  PubMed  CAS  Google Scholar 

  • Morrow PE (1988) Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol 10:369–384

    Article  PubMed  CAS  Google Scholar 

  • Morrow PE (1992) Dust overloading of the lungs: update and appraisal. Toxicol Appl Pharmacol 113:1–12

    Article  PubMed  CAS  Google Scholar 

  • Muhle H, Bellmann B, Creutzenberg O, Dasenbrock C, Ernst H, Kilpper R, MacKenzie JC, Morrow P, Mohr U, Takenaka S (1991) Pulmonary response to toner upon chronic inhalation exposure in rats. Fundam Appl Toxicol 17:280–299

    Article  PubMed  CAS  Google Scholar 

  • National Institute for Public Health and the Environment (RIVM) (2002) Multiple path particle dosimetry model (MPPD v 1.0): a model for human and rat airway particle dosimetry. RIVA report 650010030, Bilthoven, The Netherlands

  • Nikula KJ (2000) Rat lung tumors induced by exposure to selected poorly soluble nonfibrous particles. Inhal Toxicol 12:97–119

    Article  PubMed  CAS  Google Scholar 

  • Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL (1995) Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam Appl Toxicol 25:80–94

    Article  PubMed  CAS  Google Scholar 

  • NTP (1993) Toxicology and carcinogenesis studies of talc (CAS no. 14807-96-6) (non-asbestiform) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser 421:1–287

    Google Scholar 

  • Oberdörster G (1995) Lung particle overload: implications for occupational exposures to particles. Regul Toxicol Pharmacol 21:123–135

    Article  PubMed  Google Scholar 

  • Oberdörster G (2002) Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56

    Article  PubMed  Google Scholar 

  • Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199

    PubMed  Google Scholar 

  • Oberdörster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Article  PubMed  Google Scholar 

  • Roller M (2008) Research on the carcinogenicity of nanoparticles and other dusts (Untersuchungen zur krebserzeugenden Wirkung von Nanopartikeln und anderen Stäuben), pp 1–309. Dortmund, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. Project number: F 2083

  • Roller M (2009) Carcinogenicity of inhaled nanoparticles. Inhal Toxicol 21(Suppl 1):144–157

    Article  PubMed  CAS  Google Scholar 

  • Roller M, Pott F (2006) Lung tumor risk estimates from rat studies with not specifically toxic granular dusts. Ann NY Acad Sci 1076:266–280

    Article  PubMed  CAS  Google Scholar 

  • Stinn W, Teredesai A, Anskeit E, Rustemeier K, Schepers G, Schnell P, Haussmann HJ, Carchman RA, Coggins CR, Reininghaus W (2005) Chronic nose-only inhalation study in rats, comparing room-aged sidestream cigarette smoke and diesel engine exhaust. Inhal Toxicol 17:549–576

    Article  PubMed  CAS  Google Scholar 

  • Valberg PA, Bruch J, McCunney RJ (2009) Are rat results from intratracheal instillation of 19 granular dusts a reliable basis for predicting cancer risk? Regul Toxicol Pharmacol 54:72–83

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Frame SR (2006) Characterization and reclassification of titanium dioxide-related pulmonary lesions. J Occup Environ Med 48:1308–1313

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author has no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gebel.

Additional information

This article is published as a part of the Special Issue “Nanotoxicology II” on the ECETOC Satellite workshop, Dresden 2010 (Innovation through Nanotechnology and Nanomaterials + Current Aspects of Safety Assessment and Regulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebel, T. Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials. Arch Toxicol 86, 995–1007 (2012). https://doi.org/10.1007/s00204-012-0835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0835-1

Keywords

Navigation