Skip to main content
Log in

Ethanol and liver: recent advances in the mechanisms of ethanol-induced hepatosteatosis

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Ethanol-induced fatty liver is a worldwide health problem without effective therapeutic methods. The underlying mechanisms are extremely complex and not fully understood. The hepatosteatosis caused by ethanol can be attributed to many factors, including the changes of the redox condition, transportation impairment of the synthesized lipid, inhibition of fatty acid oxidation, and the enhancement of the lipogenesis. Recent studies focus on the reduced oxidation of fatty acid and the enhancement of the do novo lipogenesis, and several factors are sequentially revealed. Two important nuclear transcription factors, peroxisome proliferators-activated receptor α (PPARα) and sterol regulatory element binding protein-1 (SREBP-1), and the lipid metabolism-associated enzymes regulated by the two molecules, are shown to be involved in ethanol-induced steatosis. The AMP-dependent protein kinase, adiponectin, and tumor necrosis factor α (TNF-α) may mediate the modulation of ethanol on PPARα and SREBP-1. In addition, a number of studies demonstrate that plasminogen activator inhibitor-1 (PAI-1) is also involved in ethanol-induced fatty liver, and its effects may be associated with the TNF-α production. Furthermore, the role of CYP2E1 has also been investigated. Some studies showed that CYP2E1 played a critical role in the development of alcoholic fatty liver, which was denied by other reports. As such, the exact role of CYP2E1 needs to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajmo JM, Liang X, Rogers CQ, Pennock B, You M (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:G833–G842

    Article  PubMed  CAS  Google Scholar 

  • Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273:5678–5684

    Article  PubMed  CAS  Google Scholar 

  • Assaf S, Hazard D, Pitel F, Morisson M, Alizadeh M, Gondret F, Diot C, Vignal A, Douaire M, Lagarrigue S (2003) Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and -2 genes. Poult Sci 82:54–61

    PubMed  CAS  Google Scholar 

  • Bergheim I, Guo L, Davis MA, Lambert JC, Beier JI, Duveau I, Luyendyk JP, Roth RA, Arteel GE (2006) Metformin prevents alcohol-induced liver injury in the mouse: Critical role of plasminogen activator inhibitor-1. Gastroenterology 130:2099–2112

    Article  PubMed  CAS  Google Scholar 

  • Bocos C, Gottlicher M, Gearing K, Banner C, Enmark E, Teboul M, Crickmore A, Gustafsson JA (1995) Fatty acid activation of peroxisome proliferator-activated receptor (PPAR). J Steroid Biochem Mol Biol 53:467–473

    Article  PubMed  CAS  Google Scholar 

  • Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114:147–152

    PubMed  CAS  Google Scholar 

  • Campbell FM, Kozak R, Wagner A, Altarejos JY, Dyck JR, Belke DD, Severson DL, Kelly DP, Lopaschuk GD (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum AI, Lu Y, Wu D (2009) Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 83:519–548

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Sebastian BM, Nagy LE (2007) Chronic ethanol feeding to rats decreases adiponectin secretion by subcutaneous adipocytes. Am J Physiol Endocrinol Metab 292:E621–E628

    Article  PubMed  CAS  Google Scholar 

  • Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T (1998) Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273:29577–29585

    Article  PubMed  CAS  Google Scholar 

  • Day CP (2007) Treatment of alcoholic liver disease. Liver Transpl 13:S69–S75

    Article  PubMed  Google Scholar 

  • Fearns C, Loskutoff DJ (1997) Induction of plasminogen activator inhibitor 1 gene expression in murine liver by lipopolysaccharide. Cellular localization and role of endogenous tumor necrosis factor-alpha. Am J Pathol 150:579–590

    PubMed  CAS  Google Scholar 

  • Feingold KR, Grunfeld C (1987) Tumor necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest 80:184–190

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, You M, Matsumoto M, Crabb DW (2003) Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J Biol Chem 278:27997–28004

    Article  PubMed  CAS  Google Scholar 

  • Galli A, Pinaire J, Fischer M, Dorris R, Crabb DW (2001) The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J Biol Chem 276:68–75

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Villafranca J, Guillen A, Castro J (2008) Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver. Biochimie 90:460–466

    Article  PubMed  CAS  Google Scholar 

  • Gearing KL, Gottlicher M, Widmark E, Banner CD, Tollet P, Stromstedt M, Rafter JJ, Berge RK, Gustafsson JA (1994) Fatty acid activation of the peroxisome proliferator activated receptor, a member of the nuclear receptor gene superfamily. J Nutr 124:1284S–1288S

    PubMed  CAS  Google Scholar 

  • Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 6(569):101–110

    Google Scholar 

  • Grunnet N, Kondrup J (1986) The effect of ethanol on the beta-oxidation of fatty acids. Alcohol Clin Exp Res 10:64S–68S

    Article  PubMed  CAS  Google Scholar 

  • Grunnet N, Kondrup J, Dich J (1987) Ethanol-induced accumulation of triacylglycerol in cultured hepatocytes: dependency on ethanol metabolism. Alcohol Alcohol Suppl 1:257–261

    PubMed  CAS  Google Scholar 

  • Hardardottir I, Doerrler W, Feingold KR, Grunfeld C (1992) Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem Biophys Res Commun 186:237–243

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (1992) Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim Biophys Acta 1123:231–238

    PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  • Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Issemann I, Prince RA, Tugwood JD, Green S (1993) The peroxisome proliferator-activated receptor:retinoid X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs. J Mol Endocrinol 11:37–47

    Article  PubMed  CAS  Google Scholar 

  • Ji C, Kaplowitz N (2003) Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice. Gastroenterology 124:1488–1499

    Article  PubMed  CAS  Google Scholar 

  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103:1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Kim KH (1997) Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr 17:77–99

    Article  PubMed  CAS  Google Scholar 

  • Kruithof EK (1988) Plasminogen activator inhibitors–a review. Enzyme 40:113–121

    PubMed  CAS  Google Scholar 

  • Lee GY, Kim NH, Zhao ZS, Cha BS, Kim YS (2004) Peroxisomal-proliferator-activated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. Biochem J 378:983–990

    Article  PubMed  CAS  Google Scholar 

  • Lluis JM, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2003) Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology 124:708–724

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Zhuge J, Wang X, Bai J, Cederbaum AI (2008) Cytochrome P450 2E1 contributes to ethanol-induced fatty liver in mice. Hepatology 47:1483–1494

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Baraona E, Lieber CS (1993) Alcohol consumption enhances fatty acid omega-oxidation, with a greater increase in male than in female rats. Hepatology 18:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Munday MR, Hemingway CJ (1999) The regulation of acetyl-CoA carboxylase–a potential target for the action of hypolipidemic agents. Adv Enzyme Regul 39:205–234

    Article  PubMed  CAS  Google Scholar 

  • Nachiappan V, Curtiss D, Corkey BE, Kilpatrick L (1994) Cytokines inhibit fatty acid oxidation in isolated rat hepatocytes: synergy among TNF, IL-6, and IL-1. Shock 1:123–129

    Article  PubMed  CAS  Google Scholar 

  • Nakajima T, Kamijo Y, Tanaka N, Sugiyama E, Tanaka E, Kiyosawa K, Fukushima Y, Peters JM, Gonzalez FJ, Aoyama T (2004) Peroxisome proliferator-activated receptor alpha protects against alcohol-induced liver damage. Hepatology 40:972–980

    PubMed  CAS  Google Scholar 

  • Nanji AA, Dannenberg AJ, Jokelainen K, Bass NM (2004) Alcoholic liver injury in the rat is associated with reduced expression of peroxisome proliferator-alpha (PPARalpha)-regulated genes and is ameliorated by PPARalpha activation. J Pharmacol Exp Ther 310:417–424

    Article  PubMed  CAS  Google Scholar 

  • Pai JT, Guryev O, Brown MS, Goldstein JL (1998) Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. J Biol Chem 273:26138–26148

    Article  PubMed  CAS  Google Scholar 

  • Pessayre D, Mansouri A, Fromenty B (2002) Nonalcoholic steatosis and steatohepatitis v. mitochondrial dysfunction in steatohepatitis. Am J Physiol-Gastr L 282:G193–G199

    CAS  Google Scholar 

  • Ringseis R, Muschick A, Eder K (2007) Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver. J Nutr 137:77–83

    PubMed  CAS  Google Scholar 

  • Ruderman NB, Park H, Kaushik VK, Dean D, Constant S, Prentki M, Saha AK (2003) AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise. Acta Physiol Scand 178:435–442

    Article  PubMed  CAS  Google Scholar 

  • Salaspuro MP, Shaw S, Jayatilleke E, Ross WA, Lieber CS (1981) Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons: metabolic consequences in vivo and in vitro. Hepatology 1:33–38

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z, Otani H, Brown MS, Goldstein JL (1995) Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA 92:935–938

    Article  PubMed  CAS  Google Scholar 

  • Shimano H, Horton JD, Shimomura I, Hammer RE, Brown MS, Goldstein JL (1997) Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin Invest 99:846–854

    Article  PubMed  CAS  Google Scholar 

  • Shimomura I, Shimano H, Horton JD, Goldstein JL, Brown MS (1997) Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99:838–845

    Article  PubMed  CAS  Google Scholar 

  • Sierksma A, Patel H, Ouchi N, Kihara S, Funahashi T, Heine RJ, Grobbee DE, Kluft C, Hendriks HF (2004) Effect of moderate alcohol consumption on adiponectin, tumor necrosis factor-alpha, and insulin sensitivity. Diabetes Care 27:184–189

    Article  PubMed  CAS  Google Scholar 

  • Siler SQ, Neese RA, Hellerstein MK (1999) De novo lipogenesis, lipid kinetics, and whole-body lipid balances in humans after acute alcohol consumption. Am J Clin Nutr 70:928–936

    PubMed  CAS  Google Scholar 

  • Song Z, Zhou Z, Deaciuc I, Chen T, McClain CJ (2008) Inhibition of adiponectin production by homocysteine: a potential mechanism for alcoholic liver disease. Hepatology 47:867–879

    Article  PubMed  CAS  Google Scholar 

  • Thakur V, Pritchard MT, McMullen MR, Nagy LE (2006) Adiponectin normalizes LPS-stimulated TNF-alpha production by rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol 290:G998–G1007

    Article  PubMed  CAS  Google Scholar 

  • Titov VN, Pitsin DG (1978) Effect of a single ethanol injection on lipid and lipoprotein synthesis in rat liver. Biokhimiia 43:83–88

    PubMed  CAS  Google Scholar 

  • Tomita K, Tamiya G, Ando S, Kitamura N, Koizumi H, Kato S, Horie Y, Kaneko T, Azuma T, Nagata H, Ishii H, Hibi T (2005) AICAR, an AMPK activator, has protective effects on alcohol-induced fatty liver in rats. Alcohol Clin Exp Res 29:240S–245S

    PubMed  CAS  Google Scholar 

  • Venkatesan S, Ward RJ, Peters TJ (1988) Effect of chronic ethanol feeding on the hepatic secretion of very-low-density lipoproteins. Biochim Biophys Acta 960:61–66

    PubMed  CAS  Google Scholar 

  • Wan YJ, Morimoto M, Thurman RG, Bojes HK, French SW (1995) Expression of the peroxisome proliferator-activated receptor gene is decreased in experimental alcoholic liver disease. Life Sci 56:307–317

    Article  PubMed  CAS  Google Scholar 

  • Wan YY, Cai Y, Li J, Yuan Q, French B, Gonzalez FJ, French S (2001) Regulation of peroxisome proliferator activated receptor alpha-mediated pathways in alcohol fed cytochrome P450 2E1 deficient mice. Hepatol Res 19:117–130

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112:91–100

    PubMed  CAS  Google Scholar 

  • Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Lin H, Diehl AM (2001) Fatty liver vulnerability to endotoxin-induced damage despite NF-kappaB induction and inhibited caspase 3 activation. Am J Physiol Gastrointest Liver Physiol 281:G382–G392

    PubMed  CAS  Google Scholar 

  • Yin M, Wheeler MD, Kono H, Bradford BU, Gallucci RM, Luster MI, Thurman RG (1999) Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 117:942–952

    Article  PubMed  CAS  Google Scholar 

  • Yin M, Gabele E, Wheeler MD, Connor H, Bradford BU, Dikalova A, Rusyn I, Mason R, Thurman RG (2001) Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology 34:935–942

    Article  PubMed  CAS  Google Scholar 

  • You M, Crabb DW (2004) Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol 287:G1–G6

    Article  PubMed  CAS  Google Scholar 

  • You M, Fischer M, Deeg MA, Crabb DW (2002) Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277:29342–29347

    Article  PubMed  CAS  Google Scholar 

  • You M, Matsumoto M, Pacold CM, Cho WK, Crabb DW (2004) The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127:1798–1808

    Article  PubMed  CAS  Google Scholar 

  • You M, Considine RV, Leone TC, Kelly DP, Crabb DW (2005) Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology 42:568–577

    Article  PubMed  CAS  Google Scholar 

  • Young ME, Goodwin GW, Ying J, Guthrie P, Wilson CR, Laws FA, Taegtmeyer H (2001) Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280:E471–E479

    PubMed  CAS  Google Scholar 

  • Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, Brecher P, Ruderman NB, Cohen RA (2004) AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem 279:47898–47905

    Article  PubMed  CAS  Google Scholar 

  • Zeng T, Guo FF, Zhang CL, Zhao S, Dou DD, Gao XC, Xie KQ (2008) The anti-fatty liver effects of garlic oil on acute ethanol-exposed mice. Chem Biol Interact 176:234–242

    Article  PubMed  CAS  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and technological cooperation project of Shandong Province (2008GG2NS02012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, T., Xie, KQ. Ethanol and liver: recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch Toxicol 83, 1075–1081 (2009). https://doi.org/10.1007/s00204-009-0457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-009-0457-4

Keywords

Navigation