Skip to main content

Advertisement

Log in

Toxicity potentiation by H2O2 with components of dental restorative materials on human oral cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Toxicity potentiation of two monomers [bisphenol-A-glycidyldimethacrylate (BisGMA) and urethanedimethacrylate (UDMA)] as well as two comonomers [triethyleneglycoldimethacrylate (TEGDMA) and 2-hydroxyethylmethacrylate (HEMA)], each in combination with H2O2, was investigated on the viability on human gingival fibroblasts (HGF) and human pulpal fibroblasts (HPF). The applied concentration of H2O2 was 0.06 or 0.1 mmol/l, respectively, corresponding to the EC0 of H2O2 in HGF or HPF. The cell viability was assessed by the XTT test. From this test the half maximum effect concentrations (EC50) were calculated from fitted sigmoidale curves. EC50 values were (HGF; mmol/l; mean ± s.e.m.; n = 5): HEMA 11.9 ± 0.9, TEGDMA 3.7 ± 0.3, H2O2 0.36 ± 0.04, UDMA 0.27 ± 0.08, and BisGMA 0.11 ± 0.03. No significant (P < 0.05) differences in the EC50 values were observed when HGF was exposed to substances, as compared to HPF. No significant decrease of the EC50 values was found when HGF or HPF, respectively, was exposed to HEMA or BisGMA in addition with H2O2 up to the concentration of 0.1 mmol/l, as compared to those EC50 values of each compound without H2O2 addition. A significant decrease of the TEGDMA EC50 value from 3.7 to 2.1 or 0.4 mmol/l, respectively, was found when cells were exposed to TEGDMA in combination with H2O2 (0.06 or 0.1 mmol/l), as compared to that TEGDMA EC50 value without H2O2 addition. A significant decrease of the UDMA EC50 value from 0.27 to 0.11 or 0.08 mmol/l, respectively, was found when HGF or HPF was exposed to UDMA in combination with H2O2 (0.06 or 0.1 mmol/l), as compared to that UDMA EC50 value without H2O2 addition. The addition of H2O2 (0.06 or 0.1 mmol/l) resulted in a toxicity potentiation of TEGDMA and UDMA, but not of HEMA and BisGMA, on HGF or HPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Hiyasat AS, Darmani H, Milhem MM (2005) Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Investig 9:21–25

    Article  PubMed  CAS  Google Scholar 

  • Ali I, Aboul-Enein H, Ghanem A (2005) Enantioselective toxicity and carcinogenesis. Curr Pharm Anal 1:109–125

    Article  CAS  Google Scholar 

  • Bouillaguet S, Wataha J, Hanks C, Ciucchi B, Holz J (1996) In vitro cytotoxicity and dentin permeability of HEMA. J Endod 22:244–248

    Article  PubMed  CAS  Google Scholar 

  • Cavalcanti B, Rode S, Marques M (2005) Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endond J 38:505–509

    Article  CAS  Google Scholar 

  • Cuttle L, Zhang X, Endre Z, Winterford C, Gobe G (2001) Bcl-X-L translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int 59:1779–1788

    Article  PubMed  CAS  Google Scholar 

  • Datar R, Rueggeberg F, Caughman G, Wataha J, Lewis J, Schuster G (2004) Effects of subtoxic concentrations of benzoyl peroxide on cell lipid metabolism. J Biomed Mater Res A 71:685–692

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Janke V, Volk J, Leyhausen G, Von Neuhoff N, Schlegelberger B, Geurtsen W (2004) Effects of BisGMA on glutathione metabolism and apoptosis in human gingival fibroblasts in vitro. Biomaterials 25:4573–4580

    Article  PubMed  CAS  Google Scholar 

  • Engelmann J, Volk J, Leyhausen G, Geurtsen W (2005) ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone. J Biomed Mater Res B Appl Biomater 75:272–276

    PubMed  CAS  Google Scholar 

  • Ferracane JL (1994) Elution of leachable components from composites. J Oral Rehabil 21:441–452

    Article  PubMed  CAS  Google Scholar 

  • Ferracane JL, Condon JR (1990) Rate of elution of leachable components from composite. Dent Mater 6:282–287

    Article  PubMed  CAS  Google Scholar 

  • Forst HT (1985) Probleme des multiplen Testens und Schätzens in der Arzneimittelforschung. Arzneim Forsch/Drug Res 35:3–5

    Google Scholar 

  • Fugaro J, Nordahl I, Fugaro O, Matis B, Mjor I (2004) Pulp reaction to vital bleaching. Oper Dent 29:363–368

    PubMed  Google Scholar 

  • Gerzina TM, Hume WR (1996) Diffusion of monomers from bonding resin-resin composite combinations through dentine in vitro. J Dent 24:125–128

    Article  PubMed  CAS  Google Scholar 

  • Geurtsen W, Leyhausen G (2001) Chemical–biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res 80:2046–2050

    PubMed  CAS  Google Scholar 

  • Haywood VB, Heymann HO (1989) Nightguard vital bleaching. Quintessence Int 20:173–177

    PubMed  CAS  Google Scholar 

  • Hegedus C, Bistey T, Flora-Nagy E, Keszthelyi G, Jenei A (1999) An atomic force microscopy study on the effect of bleaching agents on enamel surface. J Dent 27:509–515

    Article  PubMed  CAS  Google Scholar 

  • Heil J, Reifferscheid G, Waldmann P, Leyhausen G, Geurtsen W (1996) Genotoxicity of dental materials. Mutat Res 368:181–194

    Article  PubMed  CAS  Google Scholar 

  • Jones T, Henderson J, Johnson R (2005) Effects of doxorubicin on human pulp cells in vitro. Cell Biol Toxicol 21:207–214

    Article  PubMed  CAS  Google Scholar 

  • Kedjarune U, Charoenworaluk N, Koontongkaew S (1999) Release of methyl methacrylate from heat-cured and autopolymerized resins: cytotoxicity testing related to residual monomer. Aust Dent J 44:25–30

    PubMed  CAS  Google Scholar 

  • Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W (2001) Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 22:317–322

    Article  PubMed  CAS  Google Scholar 

  • Kleinsasser NH, Wallner BC, Harreus UA, Kleinjung T, Folwaczny M, Hickel R, Kehe K, Reichl FX (2004) Genotoxicity and cytotoxicity of dental materials in human lymphocytes as assessed by the single cell microgel electrophoresis (comet) assay. J Dent 32:229–234

    Article  PubMed  CAS  Google Scholar 

  • Lai YL, Yang ML, Lee SY (2003) Microhardness and color changes of human dentin with repeated intracoronal bleaching. Oper Dent 28:786–792

    PubMed  Google Scholar 

  • Lee S, Yoon Y, Jang YY, Song JH, Han ES, Lee CS (2001) Effect of iron and ascorbate on cyclosporine-induced oxidative damage of kidney mitochondria and microsomes. Pharmacol Res 43:161–171

    Article  PubMed  CAS  Google Scholar 

  • Lefeuvre M, Amjaad W, Goldberg M, Stanislawski L (2005) TEGDMA induces mitochondrial damage and oxidative stress in human gingival fibroblasts. Biomaterials 26:5130–5137

    Article  PubMed  CAS  Google Scholar 

  • Lonnroth EC, Shahnavaz H (1997) Use of polymer materials in dental clinics, case study. Swed Dent J 21:149–159

    PubMed  CAS  Google Scholar 

  • Mathias CGT, Caldwell TM, Maibach HI (1979) Contact-dermatitis and gastro-intestinal symptoms from hydroxyethylmethacrylate. Br J Dermatol 100:447–449

    Article  PubMed  CAS  Google Scholar 

  • Mazzaoui SA, Burrow MF, Tyas MJ (2002) Long-term quantification of the release of monomers from dental resin composites and a resin-modified glass ionomer cement. J Biomed Mater Res 63:299–305

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi N, Takarada K (1992) Effect of Hema on bonding to dentin. Dent Mater 8:125–130

    Article  PubMed  CAS  Google Scholar 

  • Ratanasathien S, Wataha JC, Hanks CT, Dennsion JB (1995) Cytotoxic interactive effects of dentin bonding components on mouse fibroblasts. J Dent Res 74:1602–1606

    Article  PubMed  CAS  Google Scholar 

  • Reichl FX, Durner J, Hickel R, Kunzelmann KH, Jewett A, Wang MY, Spahl W, Kreppel H, Moes GW, Kehe K, Walther U, Forth W, Hume WR (2001) Distribution and excretion of TEGDMA in guinea pigs and mice. J Dent Res 80:1412–1415

    PubMed  CAS  Google Scholar 

  • Reichl F, Durner J, Kehe K, Folwaczny M, Kleinsasser N, Schwarz M, El-Mahdy K, Hickel R (2003) Synergistic effects of H2O2 with components of dental restorative materials on gluconeogenesis in rat kidney tubules. Biomaterials 24:1909–1916

    Article  CAS  Google Scholar 

  • Rueggeberg FA, Caughman WF (1993) The influence of light exposure on polymerization of dual-cure resin cements. Oper Dent 18:48–55

    PubMed  CAS  Google Scholar 

  • Salahudeen AK, Huang H, Patel P, Jenkins JK (2000) Mechanism and prevention of cold storage-induced human renal tubular cell injury. Transplantation 70:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Sasaki N, Okuda K, Kato T, Kakishima H, Okuma H, Abe K, Tachino H, Tuchida K, Kubono K (2005) Salivary bisphenol-A levels detected by ELISA after restoration with composite resin. J Mater Sci Mater Med 16:297–300

    Article  PubMed  CAS  Google Scholar 

  • Schweikl H, Schmalz G (1997) Glutaraldehyde-containing dentin bonding agents are mutagens in mammalian cells in vitro. J Biomed Mater Res 36:284–288

    Article  PubMed  CAS  Google Scholar 

  • Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, Hickel R, Reichl FX (2005) In vitro embryotoxicity assessment with dental restorative materials. J Dent 33:49–55

    Article  PubMed  CAS  Google Scholar 

  • Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Curren MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium formazan assay for cell-growth and drug sensitivity in culture using human and other tumor-cell lines. Cancer Res 48:4827–4833

    PubMed  CAS  Google Scholar 

  • Seiss M, Kehe K, Haffner C, El-Mahdy K, Hickel R, Nitz S, Walther UI, Manhart J, Reichl FX (2004) Analytic of (toxic) intermediates from metabolized dental restorative materials. Naunyn Schmiedebergs Arch Pharmacol 369:R107

    Google Scholar 

  • Seiss M, Nitz S, Kleinsasser N, Buters J, Behrendt H, Hickel R, Reichl F (2007) Identification of 2,3-epoxymethacrylic acid as an intermediate in the metabolism of dental materials in human liver microsomes. Dent Mater 23:9–16

    Article  PubMed  CAS  Google Scholar 

  • Sofou A, Tsoupi I, Emmanouil J, Karayannis M (2005) HPLC determination of residual monomers released from heat-cured acrylic resins. Anal Bioanal Chem 381:1336–1346

    Article  PubMed  CAS  Google Scholar 

  • Spahl W, Budzikiewicz H, Geurtsen W (1998) Determination of leachable components from four commercial dental composites by gas and liquid chromatography mass spectrometry. J Dent 26:137–145

    Article  PubMed  CAS  Google Scholar 

  • Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A (2003) TEGDMA-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 66A:476–482

    Article  CAS  Google Scholar 

  • Terasaka H, Kadoma Y, Sakagami H, Fujisawa S (2005) Cytotoxicity and apoptosis-inducing activity of bisphenol A and hydroquinone in HL-60 cells. Anticancer Res 25:2241–2247

    PubMed  CAS  Google Scholar 

  • Volk J, Leyhausen G, Dogan S, Geurtsen W (in press) Additive effects of TEGDMA and hydrogen peroxide on the cellular glutathione content of human gingival fibroblasts. Dent Mater

  • Walther UI, Siagian II, Walther SC, Reichl FX, Hickel R (2004) Antioxidative vitamins decrease cytotoxicity of HEMA and TEGDMA in cultured cell lines. Arch Oral Biol 49:125–131

    Article  PubMed  CAS  Google Scholar 

  • Yao HR, Richardson DE (2000) Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide. J Am Chem Soc 122:3220–3221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG), Germany; number RE 633/2-1/4. The authors gratefully acknowledge the excellent technical assistance of Sabine Domes and Stefan Schulz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz-Xaver Reichl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichl, FX., Seiss, M., Marquardt, W. et al. Toxicity potentiation by H2O2 with components of dental restorative materials on human oral cells. Arch Toxicol 82, 21–28 (2008). https://doi.org/10.1007/s00204-007-0226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0226-1

Keywords

Navigation