Skip to main content
Log in

Hepatocytes isolated from preneoplastic rat livers are resistant to ethacrynic acid cytotoxicity

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Glutathione S-transferases (GSTs) are involved in the detoxification of xenobiotics, such as several cytostatic drugs, through conjugation with glutathione (GSH). Pi class GST (GST P) liver expression is associated with preneoplastic and neoplastic development and contributes with the drug-resistance phenotype. Ethacrynic acid (EA) is an inhibitor of rat and human GSTs. In addition, causes lipid peroxidation in isolated rat hepatocytes. Therefore, we decided to evaluate the role of the GST/GSH system in isolated hepatocytes from preneoplastic rat livers (IP) in the presence of EA and determine the cytotoxicity of the drug. Our results showed a resistance to the toxic effects of EA since viability and cellular integrity values were significantly higher than control. Initial levels of thiobarbituric acid reactive substances (TBARS) in IP hepatocytes were significantly higher than control and the presence of EA did not change TBARS levels. A diminution in intracellular total GSH was observed by treating with EA isolated hepatocytes from both groups. However, the initial total GSH levels were higher in IP hepatocytes than in control. Immunoblotting analysis showed the presence of GST P in IP animals only. Although alpha and mu class isoenzymes levels were decreased in IP hepatocytes, total GST activity was 1.5-fold higher than in control. In addition, multidrug-resistance protein 2 (Mrp2) showed fivefold decreased levels in IP hepatocytes. In conclusion, increased total GSH, decreased Mrp2 levels and the presence of GST P could be critical factors involved in the resistance of IP hepatocytes to the toxicity of EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altmann HW (1994) Hepatic neoformations. Pathol Res Pract 190(6):513–577

    PubMed  CAS  Google Scholar 

  • Armstrong DK, Gordon GB, Hilton J, Streeper RT, Colvin OM, Davidson NE (1992) Hepsulfam sensitivity in human breast cancer cell lines: the role of glutathione and glutathione S-transferase in resistance. Cancer Res 52(6):1416–1421

    PubMed  CAS  Google Scholar 

  • Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH (1986) Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 261(33):15544–15549

    PubMed  CAS  Google Scholar 

  • Black SM, Wolf CR (1991) The role of glutathione-dependent enzymes in drug resistance. Pharmacol Ther 51(1):139–154

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, Ribes J, Borras J (1999) Epidemiology of primary liver cancer. Semin Liver Dis 19(3):271–285

    Article  PubMed  CAS  Google Scholar 

  • Coles B, Ketterer B (1990) The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol 25(1):47–70

    PubMed  CAS  Google Scholar 

  • de Lujan AM, Cerliani JP, Monti J, Carnovale C, Ronco MT, Pisani G, Lugano MC, Carrillo MC (2002) The in vivo apoptotic effect of interferon alfa-2b on rat preneoplastic liver involves Bax protein. Hepatology 35(4):824–833

    Article  CAS  Google Scholar 

  • de Lujan AM, Ronco MT, Ochoa JE, Monti JA, Carnovale CE, Pisani GB, Lugano MC, Carrillo MC (2004) Interferon alpha-induced apoptosis on rat preneoplastic liver is mediated by hepatocytic transforming growth factor beta(1). Hepatology 40(2):394–402

    Article  CAS  Google Scholar 

  • Evers R, Kool M, van DL, Janssen H, Calafat J, Oomen LC, Paulusma CC, Oude Elferink RP, Baas F, Schinkel AH, Borst P (1998) Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 101(7):1310–1319

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    PubMed  CAS  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    Article  PubMed  CAS  Google Scholar 

  • Iersel ML, Ploemen JP, Struik I, van AC, Keyzer AE, Schefferlie JG, van Bladeren PJ (1996) Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Chem Biol Interact 102(2):117–132

  • Ji B, Ito K, Sekine S, Tajima A, Horie T (2004) Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver. Free Radic Biol Med 37(11):1718–1729

    Article  PubMed  CAS  Google Scholar 

  • Keen JH, Jakoby WB (1978) Glutathione transferases. Catalysis of nucleophilic reactions of glutathione. J Biol Chem 253(16):5654–5657

    PubMed  CAS  Google Scholar 

  • Kuzmich S, Vanderveer LA, Walsh ES, LaCreta FP, Tew KD (1992) Increased levels of glutathione S-transferase pi transcript as a mechanism of resistance to ethacrynic acid. Biochem J 281(Pt1):219–224

    PubMed  CAS  Google Scholar 

  • Llovet JM, Beaugrand M (2003) Hepatocellular carcinoma: present status and future prospects. J Hepatol 38(Suppl1):S136–S149

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  • Mannervik B, Alin P, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jornvall H (1985) Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82(21):7202–7206

    Article  PubMed  CAS  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferases—structure and catalytic activity. CRC Crit Rev Biochem 23(3):283–337

    PubMed  CAS  Google Scholar 

  • Meyer DJ, Beale D, Tan KH, Coles B, Ketterer B (1985) Glutathione transferases in primary rat hepatomas: the isolation of a form with GSH peroxidase activity. FEBS Lett 184(1):139–143

    Article  PubMed  CAS  Google Scholar 

  • Morrow CS, Cowan KH (1990) Glutathione S-transferases and drug resistance. Cancer Cells 2(1):15–22

    PubMed  CAS  Google Scholar 

  • Morrow CS, Smitherman PK, Townsend AJ (1998) Combined expression of multidrug resistance protein (MRP) and glutathione S-transferase P1-1 (GSTP1-1) in MCF7 cells and high level resistance to the cytotoxicities of ethacrynic acid but not oxazaphosphorines or cisplatin. Biochem Pharmacol 56(8):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Nies AT, Konig J, Pfannschmidt M, Klar E, Hofmann WJ, Keppler D (2001) Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int J Cancer 94(4):492–499

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  • Pitot HC, Campbell HA, Maronpot R, Bawa N, Rizvi TA, Xu YH, Sargent L, Dragan Y, Pyron M (1989) Critical parameters in the quantitation of the stages of initiation, promotion, and progression in one model of hepatocarcinogenesis in the rat. Toxicol Pathol 17(4Pt1):594–611

    PubMed  CAS  Google Scholar 

  • Ploemen JH, Van OB, van Bladeren PJ (1990) Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 40(7):1631–1635

    Google Scholar 

  • Sato K (1989) Glutathione transferases as markers of preneoplasia and neoplasia. Adv Cancer Res 52:205–255

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Kitahara A, Soma Y, Inaba Y, Hatayama I, Sato K (1985) Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis. Proc Natl Acad Sci USA 82(12):3964–3968

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO (1973) Preparation of rat liver cells. 3. Enzymatic requirements for tissue dispersion. Exp Cell Res 82(2):391–398

    Article  PubMed  CAS  Google Scholar 

  • Tahir MK, Guthenberg C, Mannervik B (1989) Glutathione transferases in rat hepatoma cells. Effects of ascites cells on the isoenzyme pattern in liver and induction of glutathione transferases in the tumour cells. Biochem J 257(1):215–220

    PubMed  CAS  Google Scholar 

  • Tietz PS, Holman RT, Miller LJ, LaRusso NF (1995) Isolation and characterization of rat cholangiocyte vesicles enriched in apical or basolateral plasma membrane domains. Biochemistry 34(47):15436–15443

    Article  PubMed  CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522

    Article  PubMed  CAS  Google Scholar 

  • Tirona RG, Tan E, Meier G, Pang KS (1999) Uptake and glutathione conjugation of ethacrynic acid and efflux of the glutathione adduct by periportal and perivenous rat hepatocytes. J Pharmacol Exp Ther 291(3):1210–1219

    PubMed  CAS  Google Scholar 

  • Tolman KG, Gray PD, el MS, Luther RR, Janicki RS (1989) Toxicity of uricosuric diuretics in rat hepatocyte culture. Biochem Pharmacol 38(7):1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ (1990) Glutathione S-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy—a review. Cancer Res 50(20):6449–6454

    PubMed  CAS  Google Scholar 

  • Williams GM (1989) The significance of chemically-induced hepatocellular altered foci in rat liver and application to carcinogen detection. Toxicol Pathol 17(4Pt1):663–672

    PubMed  CAS  Google Scholar 

  • Yamamoto K, Masubuchi Y, Narimatsu S, Kobayashi S, Horie T (2002) Toxicity of ethacrynic acid in isolated rat hepatocytes. Toxicol In Vitro 16(2):151–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by research grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and from Consejo Nacional de Investigaciones Científicas y Técnicas. JPP is a recipient of a research fellowship from ANPCyT. We thank Dr. Aldo Mottino for the generous gift of the anti-Mrp2 antibody used in this study and Dr. Juan Monti and Elena Ochoa for their helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Carrillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parody, J.P., Alvarez, M.d.L., Quiroga, A. et al. Hepatocytes isolated from preneoplastic rat livers are resistant to ethacrynic acid cytotoxicity. Arch Toxicol 81, 565–573 (2007). https://doi.org/10.1007/s00204-007-0183-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0183-8

Keywords

Navigation