Skip to main content
Log in

Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Using human neuroblastoma SH-SY5Y cells, effects of acrylamide on p53 protein and intracellular signal transducting pathways were examined. Acrylamide increased p53, phosphorylated p53, and p53-associated protein murine double minute 2 (MDM2). The phosphorylation of p53 was specific for the Ser15 site. Among mitogen-activated protein kinases (MAPKs), acrylamide caused phosphorylation of extracellular signal-regulated protein kinase (ERK) and p38 but not c-Jun NH2-terminal kinase. Nevertheless, blocking p38 pathway by LL-Z1640-2 did not suppress the phosphorylation of p53 at Ser15. In contrast, a specific inhibitor of ERK kinase (U0126 or PD98059) could abolish the accumulation as well as the phosphorylation of p53 at Ser15. Elevation of MDM2 was also abolished by U0126. An inhibitor of phosphatidylinositol 3-kinase-related kinase (PIKK) pathway (wortmannin) suppressed the increase of p53 and its phosphorylation at Ser15. Hence, acrylamide increases p53 protein and its phosphorylation at Ser15 through ERK and/or PIKK pathways. On the other hand, U0126 and PD98059 suppressed to some extent the cytotoxicity of acrylamide evaluated by trypan blue exclusion and lactate dehydrogenase (LDH) leakage, whereas neither LL-Z1640-2 nor wortmannin was effective in suppressing the toxicity. Thus, ERK pathway seems to play a role both in causing the phosphorylation of p53 at Ser15 and in the cytotoxicity of acrylamide in SH-SY5Y cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Besaratinia A, Pfeifer GP (2004) Genotoxicity of acrylamide and glycidamide. J Natl Cancer Inst 96:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854

    Article  PubMed  CAS  Google Scholar 

  • Dearfield KL, Abernathy CO, Ottley MS, Brantner JH, Hayes PF (1988) Acrylamide: its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat Res 195:45–77

    PubMed  CAS  Google Scholar 

  • DeJongh J, Nordin-Andersson M, Ploeger BA, Forsby A (1999) Estimation of systemic toxicity of acrylamide by integration of in vitro toxicity data with kinetic simulations. Toxicol Appl Pharmacol 158:261–268

    Article  PubMed  CAS  Google Scholar 

  • Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983

    Article  PubMed  CAS  Google Scholar 

  • Gold BG, Schaumburg HH (2000) Acrylamide. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology, 2nd edn. Oxford University Press, New York, pp 124–132

    Google Scholar 

  • Hartley CL, Anderson VE, Anderton BH, Robertson J (1997) Acrylamide and 2,5-hexanedione induce collapse of neurofilaments in SH-SY5Y human neuroblastoma cells to form perikaryal inclusion bodies. Neuropathol Appl Neurobiol 23:364–372

    Article  PubMed  CAS  Google Scholar 

  • Igisu H, Goto I, Kawamura Y, Kato M, Izumi K, Kuroiwa Y (1975) Acrylamide encephaloneuropathy due to well water pollution. J Neurol Neurosurg Psychiatry 38:581–584

    Article  PubMed  CAS  Google Scholar 

  • Iryo Y, Matsuoka M, Wispriyono B, Sugiura T, Igisu H (2000) Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem Pharmacol 60:1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita Y, Matsumura H, Igisu H, Yokota A (2000) Brain of rats intoxicated with acrylamide: observation with 4.7 tesla magnetic resonance. Arch Toxicol 74:487–489

    Article  PubMed  CAS  Google Scholar 

  • Kohriyama K, Matsuoka M, Igisu H (1994) Effects of acrylamide and acrylic acid on creatine kinase activity in the rat brain. Arch Toxicol 68:67–70

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y-W, Ueda S, Ueno M, Yodoi J, Masutani H (2002) Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem 277:1837–1844

    Article  PubMed  CAS  Google Scholar 

  • Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  PubMed  CAS  Google Scholar 

  • Le Quesne PM (1980) Acrylamide. In: Spencer PS, Schaumburg HH (eds) Experimental and clinical neurotoxicology. Williams & Wilkins, Baltimore, pp 309–325

    Google Scholar 

  • Matsuoka M, Igisu H (2001) Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells. Biochem Biophys Res Commun 282:1120–1125

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Igisu H, Lin J, Inoue N (1990) Effects of acrylamide and N,N’-methylene-bis-acrylamide on creatine kinase activity. Brain Res 507:351–353

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Igisu H, Morimoto Y (2003) Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers. Environ Health Perspect 111:509–512

    Article  PubMed  CAS  Google Scholar 

  • Meek DW (1998) New developments in the multi-site phosphorylation and integration of stress signalling at p53. Int J Radiat Biol 74:729–737

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa-Yagi Y, Choi DK, Ogane N, Shimada S, Seya M, Momoi T, Ito T, Sakaki Y (2001) Discovery of a novel compound: insight into mechanisms for acrylamide-induced axonopathy and colchicine-induced apoptotic neuronal cell death. Brain Res 909:8–19

    Article  PubMed  CAS  Google Scholar 

  • Persons DL, Yazlovitskaya EM, Pelling JC (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 275:35778–35785

    Article  PubMed  CAS  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  • She Q-B, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275:20444–20449

    Article  PubMed  CAS  Google Scholar 

  • Shieh S-Y, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  PubMed  CAS  Google Scholar 

  • Shih A, Lin H-Y, Davis FB, Davis PJ (2001) Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry 40:2870–2878

    Article  PubMed  CAS  Google Scholar 

  • Siliciano JD, Canman CE, Taya Y, Sakaguchi K, Appella E, Kastan MB (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481

    Article  PubMed  CAS  Google Scholar 

  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275:12200–12206

    Article  PubMed  CAS  Google Scholar 

  • Takehana K, Sato S, Kobayasi T, Maeda T (1999) A radicicol-related macrocyclic nonaketide compound, antibiotic LL-Z1640–2, inhibits the JNK/p38 pathways in signal-specific manner. Biochem Biophys Res Commun 257:19–23

    Article  PubMed  CAS  Google Scholar 

  • Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH (2000) p53: death star. Cell 103:691–694

    Article  PubMed  CAS  Google Scholar 

  • Vousden KH, Prives C (2005) p53 and prognosis: new insights and further complexity. Cell 120:7–10

    PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed  CAS  Google Scholar 

  • Wang S, Shi X (2001) Mechanisms of Cr(VI)-induced p53 activation: the role of phosphorylation, mdm2 and ERK. Carcinogenesis 22:757–762

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74:589–607

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tsutomu Sugiura (Department of Immunology, University of Occupational and Environmental Health) for his help. We gratefully acknowledge receipt of LL-Z1640-2 from Dr. Kenji Takehana and Dr. Tsuyoshi Kobayashi (Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., Kawasaki, Japan). This work was supported in part by Grant-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. To the best of our knowledge, our experiments comply with the current laws of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Igisu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuno, T., Matsuoka, M., Sumizawa, T. et al. Involvement of the extracellular signal-regulated protein kinase pathway in phosphorylation of p53 protein and exerting cytotoxicity in human neuroblastoma cells (SH-SY5Y) exposed to acrylamide. Arch Toxicol 80, 146–153 (2006). https://doi.org/10.1007/s00204-005-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-005-0022-8

Keywords

Navigation