Skip to main content
Log in

Endophytic Fusarium species, a unique bioresource for disaggregator of misfolded alpha-synuclein

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Aggregation of α-synuclein into toxic oligomeric structures has been implicated in the pathogenesis of Parkinson’s disease via several key stages of fibrillation, oligomerization, and aggregation. Disaggregation or prevention of aggregation has garnered a lot of attention as a therapeutic strategy to prevent or delay the progression of Parkinson’s disease. It has been recently established that certain polyphenolic compounds and catechins present in plants and tea extracts exhibit the potential to inhibit the α-synuclein aggregation. However, their copious supply for therapeutic development is still unsolved. Herein, we report for the first time the disaggregation potential of α-synuclein by an endophytic fungus residing in tea leaves (Camellia sinensis). Briefly, a recombinant yeast expressing α-synuclein was used for pre-screening of 53 endophytic fungi isolated from tea using anti-oxidant activity as a marker for the disaggregation of the protein. One isolate #59CSLEAS exhibited 92.4% reduction in production of the superoxide ions, which were similar to the already established α-synuclein disaggregator, Piceatannol exhibiting 92.8% reduction. Thioflavin T assay further established that #59CSLEAS decreased the oligomerization of α-synuclein by 1.63-fold. Subsequently Dichloro-dihydro-fluorescein diacetate-based fluorescence assay exhibited a reduction in total oxidative stress in the recombinant yeast in the presence of fungal extract, thereby indicating the prevention of oligomerization. Oligomer disaggregation potential of the selected fungal extract was found to be 56.5% as assessed by sandwich ELISA assay. Using morphological as well as molecular methods, the endophytic isolate #59CSLEAS was identified as Fusarium sp. The sequence was submitted in the Genbank with accession number ON226971.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable and justifiable request.

References

Download references

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SS conceived the research. SV performed the research and acquired the data. Both authors analyzed and interpreted the data and were involved in drafting the manuscript.

Corresponding author

Correspondence to Sanjai Saxena.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interest to disclose.

Ethical approval

Not applicable.

Consent to participate

All authors agree on what is described about their participation in this work.

Consent to publication

All authors agree on the submission of the manuscript.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, S., Saxena, S. Endophytic Fusarium species, a unique bioresource for disaggregator of misfolded alpha-synuclein. Arch Microbiol 205, 224 (2023). https://doi.org/10.1007/s00203-023-03575-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03575-z

Keywords

Navigation