Skip to main content

Advertisement

Log in

Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell–cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of − 31.6083 kcal/mole; − 34.5821 kcal/mole, − 48.2226 kcal/mole and − 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio 9:e02331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51:344–349

    PubMed  Google Scholar 

  • Ali L, Goraya MU, Arafat Y, Ajmal M, Chen JL, Yu D (2017) Molecular mechanism of quorum-sensing in Enterococcus faecalis: its role in virulence and therapeutic approaches. Int J Mol Sci 18:960

    PubMed Central  Google Scholar 

  • Ampelli C, Centi G, Passalacqua R, Perathoner S (2016) Electrolyte-less design of PEC cells for solar fuels: prospects and open issues in the development of cells and related catalytic electrodes. Catal Today 259:246–258

    CAS  Google Scholar 

  • Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeter Biodegr 35:317–327

    CAS  Google Scholar 

  • Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Kačániová M (2017) Critical review on biofilm methods. Crit Rev Microbiol 43:313–351

    CAS  PubMed  Google Scholar 

  • Banerjee G, Ray AK (2017) Quorum-sensing network-associated gene regulation in Gram-positive bacteria. Acta Microbiol Immunol Hung 64:439–453

    CAS  PubMed  Google Scholar 

  • Bareia T, Pollak S, Eldar A (2018) Self-sensing in Bacillus subtilis quorum-sensing systems. Nat Microbiol 3:83–89

    CAS  PubMed  Google Scholar 

  • Barkay T, Schaefer J (2001) Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323

    CAS  PubMed  Google Scholar 

  • Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–424

    CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Showalter RE, Silverman MR (1993) Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786

    CAS  PubMed  Google Scholar 

  • Bassler BL, Wright M, Silverman MR (1994) Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Mol Microbiol 12:403–412

    CAS  PubMed  Google Scholar 

  • Boon N, De Gelder L, Lievens H, Siciliano SD, Top EM, Verstraete W (2002) Bioaugmenting bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ Sci Technol 36:4698–4704

    CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    CAS  Google Scholar 

  • Bryers JD (1993) Bacterial biofilms. Curr Opin Biotechnol 4:197–204

    CAS  PubMed  Google Scholar 

  • Cao B, Christophersen L, Kolpen M, Jensen PØ, Sneppen K, Høiby N, Sams T (2016) Diffusion retardation by binding of tobramycin in an alginate biofilm model. PLoS ONE 11:e0153616

    PubMed  PubMed Central  Google Scholar 

  • Cárcamo-Oyarce G, Lumjiaktase P, Kümmerli R, Eberl L (2015) Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat Commun 6:1–9

    Google Scholar 

  • Chambers JR, Sauer K (2013) Small RNAs and their role in biofilm formation. Trends Microbiol 21:39–49

    CAS  PubMed  Google Scholar 

  • Characklis WG, McFeters GA, Marshall KC (1990) Physiological ecology in biofilm systems. Biofilms 37:67–72

    Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    CAS  PubMed  Google Scholar 

  • Cheng C, Phipps D, Alkhaddar RM (2006) Thermophilic aerobic wastewater treatment of waste metalworking fluids. Water Environ J 20:227–232

    CAS  Google Scholar 

  • Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, Yang L (2014) Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun 5:1–12

    Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221

    CAS  PubMed  Google Scholar 

  • Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  PubMed  Google Scholar 

  • Das N, Geetanjali Basak LV, SalamJ Abdul AM (2017) Application of biofilms on remediation of pollutants–an overview. J Microbiol Biotech Res 2:783–790

    Google Scholar 

  • Dasgupta D, Kumar A, Mukhopadhyay B, Sengupta TK (2015) Isolation of phenazine 1, 6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW. 1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol 99:8653–8665

    CAS  PubMed  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Bourven I, Guibaud G, van Hullebusch ED, Panico A, Pirozzi F, Esposito G (2015) Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment. Appl Microbiol Biotechnol 99:9883–9905

    CAS  PubMed  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97:9909–9921

    CAS  PubMed  Google Scholar 

  • Engebrecht J, Nealson K, Silverman M (1983) Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773–781

    CAS  PubMed  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L, Wu Z, Yu X (2013) Quorum sensing in water and wastewater treatment biofilms. J Environ Biol 34:437–444

    CAS  PubMed  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1, 2, 4-trichlorobenzene. BMC Syst Biol 4:7

    PubMed  PubMed Central  Google Scholar 

  • Flemming HC (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33

    CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    CAS  PubMed  Google Scholar 

  • Flemming HC, Wingender J, Griegbe T, Mayer C (2000) Physico-chemical properties of biofilms. Biofilms: recent advances in their study and control. Harwood Academic Publishers, Amsterdam, pp 19–34

    Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575

    CAS  PubMed  Google Scholar 

  • Freeman JA, Bassler BL (1999) Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing in Vibrio harveyi. J Bacteriol 181:899–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Ingham C, Nakayama J, Beerthuyzen M, Kunuki R, Molenaar D, De Vos W (2008) Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J Bacteriol 190:7655–7665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM (2020) Intracellular survival and innate immune evasion of Burkholderia cepacia: improved understanding of quorum sensing-controlled virulence factors, biofilm, and inhibitors. Microbiol Immunol 64:87–98

    CAS  PubMed  Google Scholar 

  • Geesey GG, Jang L (1989) Interactions between metal ions and capsular polymers. In: Beveridge TJ, Doyl RJ (eds) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  • Guan J, Xiao X, Xu S, Gao F, Wang J, Wang T, Wang Y (2015) Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol 53:633–642

    CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Google Scholar 

  • Ha DG, O’Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbial Biofilms. https://doi.org/10.1128/microbiolspec.MB-0003-2014

    Article  Google Scholar 

  • Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    CAS  PubMed  Google Scholar 

  • Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273

    CAS  PubMed  Google Scholar 

  • Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, Parsek MR (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hmelo LR (2017) Quorum sensing in marine microbial environments. Ann Rev Mar Sci 9:257–281

    PubMed  Google Scholar 

  • Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Eng Sci 61:1347–1356

    CAS  Google Scholar 

  • Ismail AS, Valastyan JS, Bassler BL (2016) A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19:470–480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Kamil MA (2017) Bacterial biofilm and associated infections. J Chin Med Assoc 81:7–11

    PubMed  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    CAS  PubMed  Google Scholar 

  • Ji G, Beavis RC, Novick RP (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci 92:12055–12059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji G, Pei W, Zhang L, Qiu R, Lin J, Benito Y, Novick RP (2005) Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone. J Bacteriol 187:3139–3150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37:3379–3389

    CAS  PubMed  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163:1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Ramu Dirisala V, Kodali VP (2018) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4:241–249

    Google Scholar 

  • Kim SK, Lee JH (2016) Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 54:71–85

    CAS  PubMed  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discovery 3:935–949

    CAS  PubMed  Google Scholar 

  • Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

    CAS  PubMed  Google Scholar 

  • Kolari M (2003) Attachment mechanisms and properties of bacterial biofilms on non-living surfaces. University of Helsinki, Helsinki

    Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. J Environ Sci Toxicol Food Tech 8:44–50

    Google Scholar 

  • Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160:259–266

    CAS  PubMed  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41

    CAS  PubMed  Google Scholar 

  • Lewandowski Z, Evans LV (2000) Structure and function of biofilms. Biofilms 1:466

    Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YH, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WW, Yu HQ (2014) Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour Technol 160:15–23

    CAS  PubMed  Google Scholar 

  • Lilley BN, Bassler BL (2000) Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol Microbiol 36:940–954

    CAS  PubMed  Google Scholar 

  • Llamas I, Quesada E, Martínez-Cánovas MJ, Gronquist M, Eberhard A, Gonzalez JE (2005) Quorum sensing in halophilic bacteria: detection of N-acyl-homoserine lactones in the exopolysaccharide-producing species of Halomonas. Extremophiles 9:333–341

    CAS  PubMed  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425

    CAS  PubMed  Google Scholar 

  • Lloyd DG, Whitworth DE (2017) The myxobacteriumeley Myxococcus xanthus can sense and respond to the quorum signals secreted by potential prey organisms. Front Microbiol 8:439

    PubMed  PubMed Central  Google Scholar 

  • Lyon GJ, Novick RP (2004) Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25:1389–1403

    CAS  PubMed  Google Scholar 

  • M’rassi AG, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22:15332–15346

    Google Scholar 

  • Ma Q, Yang Z, Pu M, Peti W, Wood TK (2011) Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ Microbiol 13:631–642

    CAS  PubMed  Google Scholar 

  • Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Tegos GP (2018) Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Rev 31:e00084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    CAS  PubMed  Google Scholar 

  • Mangwani N, Shukla SK, Kumari S, Das S, Rao TS (2016) Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv 6:57540–57551

    CAS  Google Scholar 

  • Marican A, Durán-Lara EF (2018) A review on pesticide removal through different processes. Environ Sci Pollut Res 25:2051–2064

    CAS  Google Scholar 

  • Mashburn-Warren L, Morrison DA, Federle MJ (2010) A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbial 78:589–606

    CAS  Google Scholar 

  • Mattei MR, Frunzo L, D’Acunto B, Pechaud Y, Pirozzi F, Esposito G (2018) Continuum and discrete approach in modeling biofilm development and structure: a review. J Math Biol 76:945–1003

    CAS  PubMed  Google Scholar 

  • Mejáre M, Bülow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol 19:67–73

    PubMed  Google Scholar 

  • Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J Bioremediat Biodegrad 7:2

    Google Scholar 

  • Mielich-Süss B, Lopez D (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17:555–565

    PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  PubMed  Google Scholar 

  • Mitra A, Mukhopadhyay S (2015) Biofilm mediated decontamination of pollutants from the environment. Aims Bioengineering 3:44–59

    Google Scholar 

  • Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res 22:14852–14861

    CAS  Google Scholar 

  • Mohan SV, Ramakrishna M, Shailaja S, Sarma PN (2007) Influence of soil–water ratio on the performance of slurry phase bioreactor treating herbicide contaminated soil. Bioresour Technol 98:2584–2589

    Google Scholar 

  • Mooney JA, Pridgen EM, Manasherob R, Suh G, Blackwell HE, Barron AE, Amanatullah DF (2018) Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res 36:2331–2339

    PubMed  Google Scholar 

  • Morgan-Sagastume F (2018) Biofilm development, activity and the modification of carrier material surface properties in moving-bed biofilm reactors (MBBRs) for wastewater treatment. Crit Rev Environ Sci Technol 48:439–470

    CAS  Google Scholar 

  • Nakayama J, Yokohata R, Sato M, Suzuki T, Matsufuji T, Nishiguchi K, Sonomoto K (2013) Development of a peptide antagonist against fsr quorum sensing of Enterococcus faecalis. ACS Chem Biol 8:804–811

    CAS  PubMed  Google Scholar 

  • Neelapu NRR, Dutta T, Challa S (2018) Quorum sensing and its role in Agrobacterium mediated gene transfer. Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore, pp 259–275

    Google Scholar 

  • Nishitani K, Sutipornpalangkul W, de Mesy Bentley KL, Varrone JJ, Bello-Irizarry SN, Ito H, Schwarz EM (2015) Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J Orthop Res 33:1311–1319

    PubMed  PubMed Central  Google Scholar 

  • Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nocelli N, Bogino PC, Banchio E, Giordano W (2016) Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9:418

    PubMed Central  Google Scholar 

  • Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. The EMBO J 12:3967–3975

    CAS  PubMed  Google Scholar 

  • Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Moghazeh S (1995) Theagr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248:446–458

    CAS  PubMed  Google Scholar 

  • Oslizlo A, Stefanic P, Dogsa I, Mandic-Mulec I (2014) Private link between signal and response in Bacillus subtilis quorum sensing. Proc Natl Acad Sci 111:1586–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pala DM, de Carvalho DD, Pinto JC, Sant’Anna GL Jr (2006) A suitable model to describe bioremediation of a petroleum-contaminated soil. Int Biodeterior Biodegrad 58:254–260

    CAS  Google Scholar 

  • Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun 327:637–639

    CAS  PubMed  Google Scholar 

  • Papenfort K, Bassler BL (2016) Quorum sensing signal–response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passos da Silva D, Schofield MC, Parsek MR, Tseng BS (2017) An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens 6:51

    PubMed Central  Google Scholar 

  • Perumbakkam S, Hess TF, Crawford RL (2006) A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Biodegradation 17:545–557

    CAS  PubMed  Google Scholar 

  • Petrova OE, Sauer K (2009) A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog 5:e1000668

    PubMed  PubMed Central  Google Scholar 

  • Petrova OE, Sauer K (2011) SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol 23:6614–6628

    Google Scholar 

  • Petrova OE, Gupta K, Liao J, Goodwine JS, Sauer K (2017) Divide and conquer: the Pseudomonas aeruginosa two-component hybrid Sag S enables biofilm formation and recalcitrance of biofilm cells to antimicrobial agents via distinct regulatory circuits. Environ Microbiol 19:2005–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    PubMed  PubMed Central  Google Scholar 

  • Rajamanikandan S, Jeyakanthan J, Srinivasan P (2017) Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Appl Biochem Biotechnol 181:192–218

    CAS  PubMed  Google Scholar 

  • Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remuzgo-Martínez S, Lázaro-Díez M, Mayer C, Aranzamendi-Zaldumbide M, Padilla D, Calvo J, Ramos-Vivas J (2015) Biofilm formation and quorum-sensing-molecule production by clinical isolates of Serratia liquefaciens. Appl Environ Microbiol 81:3306–3315

    PubMed  PubMed Central  Google Scholar 

  • Rizzello CG, Filannino P, Di Cagno R, Calasso M, Gobbetti M (2014) Quorum-sensing regulation of constitutive plantaricin by Lactobacillus plantarum strains under a model system for vegetables and fruits. Appl Environ Microbiol 80:777–787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AP, Mullany P, Wilson M (2001) Gene transfer in bacterial biofilms. Method Enzymol 336:60–65

    CAS  Google Scholar 

  • Römling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77:1–52

    PubMed  PubMed Central  Google Scholar 

  • Rosenberg M, Greenstein RBN, Barki M, Goldberg S (1996) Hydrophobic interactions as a basis for interfering with microbial adhesion. In: Kahane I, Ofek I (eds) Toward anti-adhesion therapy for microbial diseases. Advances in experimental medicine and biology, vol 408. Springer, Boston. https://doi.org/10.1007/978-1-4613-0415-9_29

    Chapter  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427

    PubMed  PubMed Central  Google Scholar 

  • Saenz HL, Augsburger V, Vuong C, Jack RW, Götz F, Otto M (2000) Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch Microbiol 174:452–455

    CAS  PubMed  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    CAS  PubMed  Google Scholar 

  • Shanker E, Federle MJ (2017) Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8:15

    PubMed Central  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22

    CAS  PubMed  Google Scholar 

  • Shukla SK, Mangwani N, Rao TS, Das S (2014) Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. Microbial Biodegrad Bioremed. https://doi.org/10.1016/B978-0-12-800021-2.00008-X

    Article  Google Scholar 

  • Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    CAS  PubMed  Google Scholar 

  • Singh R, Tiwari M, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava SK, Rajasree K, Fasim A, Arakere G, Gopal B (2014) Influence of the AgrC-AgrA complex in the response time of Staphylococcus aureus quorum sensing. J Bacteriol 196:2876–2888

    PubMed  PubMed Central  Google Scholar 

  • Stalder T, Top E (2016) Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes 2:16022

    PubMed  PubMed Central  Google Scholar 

  • Stevens AM, Dolan KM, Greenberg EP (1994) Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci 91:12619–12623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    CAS  PubMed  Google Scholar 

  • Sun S, Sidhu V, Rong Y, Zheng Y (2018) Pesticide pollution in agricultural soils and sustainable remediation methods: a review. Curr Pollut Rep 4:240–250

    CAS  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  PubMed  Google Scholar 

  • Svenningsen NB, Martínez-García E, Nicolaisen MH, de Lorenzo V, Nybroe O (2018) The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology 164:883–888

    CAS  PubMed  Google Scholar 

  • Swem LR, Swem DL, Wingreen NS, Bassler BL (2008) Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:461–473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tay PKR, Nguyen PQ, Joshi NS (2017) A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth Biol 6:1841–1850

    PubMed  Google Scholar 

  • Valentini M, Filloux A (2016) Biofilms and c-di-GMP signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57:548–573

    PubMed  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    CAS  PubMed  Google Scholar 

  • Verbeke F, De Craemer S, Debunne N, Janssens Y, Wynendaele E, Van de Wiele C, De Spiegeleer B (2017) Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front Neurosci 11:183

    PubMed  PubMed Central  Google Scholar 

  • Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG (2000) Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J Bacteriol 182:4578–4586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tian Y, Han B, Zhao HB, Bi JN, Cai BL (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci (China) 19:222–225

    CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    CAS  PubMed  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh MA, Blackwell HE (2016) Chemical genetics reveals environment-specific roles for quorum sensing circuits in Pseudomonas aeruginosa. Cell Chem Biol 23:361–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiechmann, A. (2016). Quorum sensing and the regulation of multicellular behaviour in Yersinia pseudotuberculosis (Doctoral dissertation, University of Nottingham)

  • Wood TK, Hong SH, Ma Q (2011) Engineering biofilm formation and dispersal. Trends Biotechnol 29:87–94

    CAS  PubMed  Google Scholar 

  • Wu G, Robertson DH, Brooks CL III, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    CAS  PubMed  Google Scholar 

  • Zaitseva YV, Popova AA, Khmel IA (2014) Quorum sensing regulation in bacteria of the family enterobacteriaceae. Russ J Genet 50:323–340

    CAS  Google Scholar 

  • Zhang XS, García-Contreras R, Wood TK (2007) YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189:3051–3062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang WQ, Tay JH, Maszenan A, Tay S (2002) Bacillus naphthovorans sp. nov. from oil-contaminated tropical marine sediments and its role in naphthalene biodegradation. Appl Microbiol Biotechnol 58:547–554

    CAS  PubMed  Google Scholar 

  • Ziemichód A, Skotarczak B (2017) QS–systems communication of Gram-positive bacterial cells. Acta Biol 24:51–56

    Google Scholar 

Download references

Acknowledgements

Financial assistance provided by NASF research grant (Project entitled “Bioremediation of chemical contaminants and their complexes present in drainage water with high dynamic flux used for irrigation in urban and periurban agriculture”), sanction no. NASF/CA-6030/2017-2018 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep Kumar Singh.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, B., Dhaulaniya, A.S., Varma, D.A. et al. Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol 203, 13–30 (2021). https://doi.org/10.1007/s00203-020-02012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02012-9

Keywords

Navigation