Skip to main content
Log in

Description of Deinococcus populi sp. nov. from the trunk surface of a Japanese aspen tree

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A bacterial strain designated PtRA-8T was isolated from the trunk surface of a Japanese aspen tree (Populus tremula var. sieboldii). Cells of strain PtRA-8T were aerobic, non-motile, non-spore forming, Gram-stain-negative rods, 1.0‒2.0 µm in width and 3.0‒10.0 µm in length. The pH range for growth was between 5.5 and 7.5, with an optimum at 6.5. The temperature range for growth was between 10 and 37 °C, with an optimum at around 25‒30 °C. Strain PtRA-8T was highly resistant to UV irradiation, similar to its Deinococcus relatives. The respiratory quinone was menaquinone MK-8. The major cellular fatty acids (> 10% of the total fatty acid content) were iso-C15:0 (17.8%), C16:0 (15.0%), iso-C17:0 (10.4%), and iso-C17:1 ω9c/C16:010-methyl (22.2%). The polar lipids consisted of four unidentified glycolipids, two unidentified aminolipids, two unidentified phospholipids, and three unidentified polar lipids. The peptidoglycan was A3β-type containing glutamic acid, glycine, alanine, and ornithine. The DNA G + C content of strain PtRA-8T was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain PtRA-8T was closely related to “Deinococcus radioresistens” 8AT (97.4%), Deinococcus metalli DSM 27521T (95.7%), and Deinococcus yunweiensis YIM 007T (94.5%). The DNADNA hybridization experiments between strain PtRA-8T and its relatives yielded relatedness values below 70%. Based on the polyphasic evidence, we concluded that strain PtRA-8T represents a novel species within the genus Deinococcus, for which the name Deinococcus populi is proposed. The type strain of D. populi is PtRA-8T (= DSM 29820T= NBRC 110763T; DPD TaxonNumber TA00271).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelkafi S, Chamkha M, Casalot L, Sayadi S, Labat M (2005) Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252:79–84

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Awad TS, Beppu T, Ueda K (2009) Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59:144–149

    Article  CAS  PubMed  Google Scholar 

  • Battista JR, Rainey FA (2015) Deinococcus. In: Bergey’s manual of systematics of archaea and bacteria. Wiley, New Jersey, 1–13

    Google Scholar 

  • Beattie GA (2006) Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 1–56

    Google Scholar 

  • Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-Gonzalez R, McKay CP, da Costa MS, Rainey FA (2008) Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang B, Hong H, Yang H, Liu SJ (2012) Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 62:78–83

    Article  CAS  PubMed  Google Scholar 

  • Dianou D, Miyaki T, Asakawa S, Morii H, Nagaoka K, Oyaizu H, Matsumoto S (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int J Syst Evol Microbiol 51:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • Dong N, Li HR, Yuan M, Zhang XH, Yu Y (2015) Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 65:331–335

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Feng GD, Wang YH, Li YX, Zhu HH (2015) Deinococcus metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 65:3457–3461

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Fu YX, Li WH (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546–557

    CAS  PubMed  Google Scholar 

  • Gundlapally SR, Garcia-Pichel F (2017) Description of Deinococcus oregonensis sp. nov., from biological soil crusts in the Southwestern arid lands of the United States of America. Arch Microbiol 199:69–76

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1988) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Lai WA, Kampfer P, Arun AB, Shen FT, Huber B, Rekha PD, Young CC (2006) Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56:787–791

    Article  CAS  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KM, Leveau JH (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  PubMed  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nishijima M, Araki-Sakai M, Sano H (1997) Identification of isoprenoid quinones by frit-FAB liquid chromatography mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122

    Article  CAS  Google Scholar 

  • Oren A, Garrity GM (2016) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 66:4299–4305

    Article  PubMed  Google Scholar 

  • Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruinen J (1956) Occurrence of Beijerinckia species in the ‘Phyllosphere’. Nature 177:220–221

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smibert R, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for molecular and molecular bacteriology. American Society for Microbiology, Washington, D. C., pp 607–654

    Google Scholar 

  • Srinivasan S, Lee JJ, Lim SY, Joe MH, Im SH, Kim MK (2015) Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie Van Leeuwenhoek 107:539–545

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P, Maiden MCJ, Nesme X, Rosselló-Mora R, Swings J, Trüper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    CAS  PubMed  Google Scholar 

  • Stepanov VG, Vaishampayan P, Venkateswaran K, Fox GE (2014) Draft genome sequence of Deinococcus phoenicis, a novel strain isolated during the Phoenix Lander spacecraft assembly. Genome Announc 2:e00301-00314. doi: 10.1128/genomeA.00301-14

    Article  Google Scholar 

  • Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VPW, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  CAS  PubMed  Google Scholar 

  • Vaishampayan P, Roberts AH, Augustus A, Pukall R, Schumann P, Schwendner P, Mayilraj S, Salmassi T, Venkateswaran K (2014) Deinococcus phoenicis sp. nov., an extreme ionizing-radiation-resistant bacterium isolated from the Phoenix Lander assembly facility. Int J Syst Evol Microbiol 64:3441–3446

    Article  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wilson K (1997) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Wiley, New York, pp. 2.4.1–2.4.5

  • Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ, Zhang YQ, Xu LH, Jiang CL (2007) Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Tonouchi.

Additional information

Communicated by Erko Stackebrandt.

The DDBJ/EMBL/Geank accession number for the 16S rRNA gene sequence of Deinococcus populi PtRA-8T is LC011389.

The ‘digital protologue’ database (DPD) TaxonNumber of Deinococcus populi PtRA-8T is TA00271.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 118 KB)

Supplementary material 2 (EPS 1464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Kudo, C. & Tonouchi, A. Description of Deinococcus populi sp. nov. from the trunk surface of a Japanese aspen tree. Arch Microbiol 200, 291–297 (2018). https://doi.org/10.1007/s00203-017-1443-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1443-5

Keywords

Navigation