Skip to main content
Log in

Phylogenetics

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet’s inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian–Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersson JO et al (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8:51

    Article  PubMed  Google Scholar 

  • Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683

    Article  PubMed  CAS  Google Scholar 

  • Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59:27–40

    Article  PubMed  CAS  Google Scholar 

  • Charlebois RL, Beiko RG, Ragan MA (2003) Microbial phylogenomics: branching out. Nature 421:217

    Article  PubMed  CAS  Google Scholar 

  • DeBry RW (1992) The consistency of several phylogeny-inference methods under varying evolutionary rates. Mol Biol Evol 9:537–551

    PubMed  CAS  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  PubMed  CAS  Google Scholar 

  • Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692

    Article  PubMed  CAS  Google Scholar 

  • Grishin NV (1999) A novel approach to phylogeny reconstruction from protein sequences. J Mol Evol 48:264–273

    Article  PubMed  CAS  Google Scholar 

  • Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit Rev Microbiol 30:123–143

    Article  PubMed  CAS  Google Scholar 

  • Hernandez Fernandez M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc 80:269–302

    Article  PubMed  Google Scholar 

  • Hillis DM, Bull JJ, White ME, Badgett MR, Molineux IJ (1992) Experimental phylogenetics: generation of a known phylogeny. Science 255:589–592

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997) Phylogenetic methods come of age: testing hypotheses in an evolutionary context. Science 276:227–232

    Article  PubMed  CAS  Google Scholar 

  • Karlin S (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1:598–610

    Article  PubMed  CAS  Google Scholar 

  • Karlin S, Bucher P, Brendel V, Altschul SF (1991) Statistical methods and insights for protein and DNA sequences. Annu Rev Biophys Chem 20:175–203

    Article  CAS  Google Scholar 

  • Karlin S, Zuker M, Brocchieri L (1994) Measuring residue associations in protein structures. Possible implications for protein folding. J Mol Biol 239:227–248

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    Article  PubMed  Google Scholar 

  • Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC (1993) Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214

    Article  PubMed  CAS  Google Scholar 

  • Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332:171–182

    Article  PubMed  CAS  Google Scholar 

  • McCormack GP, Clewley JP (2002) The application of molecular phylogenetics to the analysis of viral genome diversity and evolution. Rev Med Virol 12:221–238

    Article  PubMed  CAS  Google Scholar 

  • Pickett KM, Randle CP (2005) Strange bayes indeed: uniform topological priors imply non-uniform clade priors. Mol Phylogenet Evol 34:203–211

    Google Scholar 

  • Phillips A, Janies D, Wheeler W (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol 16:317–330

    Article  PubMed  CAS  Google Scholar 

  • Puigbo P, Wolf Y, Koonin E (2009) Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8:59

    Article  PubMed  Google Scholar 

  • Sapp J (2007) The structure of microbial evolutionary theory. Stud Hist Philos Biol Biomed Sci 38:780–795

    Article  PubMed  CAS  Google Scholar 

  • Sleator RD (2010) An overview of the processes shaping protein evolution. Sci Prog 93:1–6

    Article  PubMed  Google Scholar 

  • Sleator RD, Shortall C, Hill C (2008) Metagenomics. Lett Appl Microbiol 47:361–366

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Huynen MA, Dutilh BE (2005) Genome trees and the nature of genome evolution. Annu Rev Microbiol 59:191–209

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS (2003a) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Soltis DE (2003b) Applying the bootstrap in phylogeny reconstruction. Statist Sci 18:256–267

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vingron M, Waterman MS (1994) Sequence alignment and penalty choice. Review of concepts, case studies and implications. J Mol Biol 235:1–12

    Article  PubMed  CAS  Google Scholar 

  • Wheeler D (2002) Selecting the right protein-scoring matrix. Curr Protoc Bioinform, Chap 3, Unit 35

  • Whelan S, Lio P, Goldman N (2001) Molecular phylogenetics: state-of-the-art methods for looking into the past. Trends Genet 17:262–272

    Article  PubMed  CAS  Google Scholar 

  • Wrobel B (2008) Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet 49:49–67

    Article  PubMed  Google Scholar 

  • Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42:294–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy D. Sleator.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sleator, R.D. Phylogenetics. Arch Microbiol 193, 235–239 (2011). https://doi.org/10.1007/s00203-011-0677-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0677-x

Keywords

Navigation