Skip to main content
Log in

Differential regulation of groESL operon expression in response to heat and light in Anabaena

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The HrcA protein is known to bind the cis-element CIRCE and repress expression of hsp60 in certain bacteria. However, recent data from cyanobacteria have seriously questioned the HrcA/CIRCE interaction paradigm. A hrcA null mutant showed constitutive expression of Hsp60 proteins [GroEL/Cpn60(GroEL2)], and an unexpected further increase in GroEL during temperature upshift, suggesting involvement of regulatory mechanisms other than HrcA in groESL expression in Anabaena. The negative regulation of both hsp60 genes [groEL and cpn60 (groEL2)] at CIRCE element was established by: (1) constitutive expression of Green Fluorescent Protein gene, tagged to Anabaena hsp60 promoters, in E. coli, and its repression upon co-expression of Anabaena HrcA and (2) specific binding of Anabaena HrcA to the CIRCE element. Deletion analysis of other cis-elements further distinguished (a) a photo-regulation by the K-box and (b) thermoregulation from a novel H-box, over and above the negative regulation by HrcA at CIRCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alahari A, Apte SK (1998) Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium Anabaena torulosa. Microbiol 144:1557–1563

    Article  CAS  Google Scholar 

  • Castenholz RW (1988) Culturing of cyanobacteria. Methods Enzymol 167:68–93

    Article  CAS  Google Scholar 

  • Chaurasia AK, Parasnis A, Apte SK (2008) An integrative expression vector for strain improvement and environmental applications of nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC7120. J Microbiol Methods 73:133–141

    Article  CAS  PubMed  Google Scholar 

  • Chitnis PR, Nelson N (1991) Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266:58–65

    CAS  PubMed  Google Scholar 

  • Elhai J, Wolk CP (1988) Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167:747–754

    Article  CAS  PubMed  Google Scholar 

  • Furuki M, Tanaka N, Hiyama T, Nakamoto H (1996) Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294:106–110

    PubMed  Google Scholar 

  • Kojima K, Nakamoto H (2002) Specific binding of a protein to a novel DNA element in the cyanobacterial small heat shock protein gene. Biochem Biophys Res Commun 297:616–624

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Nakamoto H (2007) A novel light- and heat-responsive regulation of the groE transcription in the absence of HrcA or CIRCE in cyanobacteria. FEBS Lett. 581:1871–1880

    Article  CAS  PubMed  Google Scholar 

  • Koksharova OA, Wolk CP (2002) Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 184:3931–3940

    Article  CAS  PubMed  Google Scholar 

  • Lehel C, Los D, Wada H, Gyorgei J, Horvath I, Kovacs E, Murata N, Vigh L (1993) A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268:1799–1804

    CAS  PubMed  Google Scholar 

  • Liu J, Huang C, Shin D-H, Yokota H, Jancarik J, Kim J-S, Adams PD, Kim R, Kim S-H (2005) Crystal structure of a heat-inducible transcriptional repressor HrcA from Therotoga maritime: structural insight into DNA binding and dimerization. J Mol Biol 350:987–996

    Article  CAS  PubMed  Google Scholar 

  • Lund PA (2009) Multiple chaperonins in bacteria-why so many? FEMS Microbiol Rev 33:785–800

    Article  CAS  PubMed  Google Scholar 

  • Mogk A, Homuth G, Scholz C, Kima L, Schmid FX, Schumann W (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–4590

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto H, Suzuki M, Kojima K (2003) Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett 549:57–62

    Article  CAS  PubMed  Google Scholar 

  • Narberhaus F (1999) Negative regulation of bacterial heat shock genes. Mol Microbiol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rajaram H, Apte SK (2008) Nitrogen status and heat stress-dependent differential expression of cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiol 154:317–325

    Article  CAS  Google Scholar 

  • Rajaram H, Ballal AD, Apte SK, Wiegert T, Schumann W (2001) Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim Biophys Acta 1519:143–146

    CAS  PubMed  Google Scholar 

  • Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L (1996) Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J Bacteriol 178:1829–1841

    CAS  PubMed  Google Scholar 

  • Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T, Yoshikawa H (2007) Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC7942. J Bacteriol 189:3751–3758

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ikeuchi M, Nakamoto H (2008) Expression and function of groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress. FEBS Lett 582:3389–3395

    Article  CAS  PubMed  Google Scholar 

  • Schumann W, Homuth G, Mogk A (1998) The GroE chaperonin machine is the major modulator of the CIRCE heat shock regulon of Bacillus subtilis. J Biosci 23:415–422

    Article  CAS  Google Scholar 

  • Singh AK, Summerfield TC, Li H, Sherman LA (2006) The heat shock response in the cyanobacterium Synechocystis sp. Strain PCC6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186:273–286

    Article  CAS  PubMed  Google Scholar 

  • Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ (2006) Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics 6:845–864

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Kanesaki Y, Hayashi H, Hall JJ, Simon WJ, Slabas AR, Murata N (2005) The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Thomas J (1970) Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Nature 228:181–183

    Article  CAS  PubMed  Google Scholar 

  • Tuominen T, Pollari M, Tyystjaervi E, Tyystjaervi T (2006) The SigB sigma factor mediates high-temperature responses in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 580:319–323

    Article  CAS  PubMed  Google Scholar 

  • Tuominen T, Pollari M, von Wobeses EA, Tyystjaervi E, Ibelings BW, Matthijs HC, Tyystjaervi T (2008) Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC6803. FEBS Lett 582:346–350

    Article  CAS  PubMed  Google Scholar 

  • Yoon HS, Golden W (1998) Heterocyst pattern formation is controlled by a diffusible peptide. Science 82:935–938

    Article  Google Scholar 

  • Yura T, Nakahigashi K (1999) Regulation of heat-shock response. Current Opin Microbiol 2:153–158

    Article  CAS  Google Scholar 

  • Yura T, Nagai H, Mori H (1993) Regulation of heat shock response in bacteria. Annu Rev Microbiol 47:321–350

    Article  CAS  PubMed  Google Scholar 

  • Zuber U, Schumann W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176:1359–1363

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. James Golden, A and M University, Texas, USA, for providing the vector pAM1956, Prof. C. P. Wolk, Michigan State University, for providing the vectors, pRL443 and pRL623 and Prof. Wolfgang Schumann, University of Bayreuth, Germany, where the work on cloning of hrcA gene of Anabaena was initiated. Thanks are also due to The Centre for Genomic Research (TCGA), New Delhi for MALDI-ToF analysis of HrcA and our colleague Akhilesh Potnis for fluorimetric analysis of the GFP expression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Kumar Apte.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajaram, H., Apte, S.K. Differential regulation of groESL operon expression in response to heat and light in Anabaena . Arch Microbiol 192, 729–738 (2010). https://doi.org/10.1007/s00203-010-0601-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0601-9

Keywords

Navigation