Skip to main content
Log in

Yeast protein phosphatases Ptp2p and Msg5p are involved in G1–S transition, CLN2 transcription, and vacuole morphogenesis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We previously reported that double disruption of protein phosphatase (PPase) genes PTP2 (phosphotyrosine-specific PPase) and MSG5 (phosphotyrosine and phosphothreonine/serine-PPase) causes Ca2+ sensitive growth, whereas the single disruptions do not. This finding suggests that Ptp2p and Msg5p are involved in Ca2+-induced stress response in a redundant manner. To gain insight into the molecular mechanism causing calcium sensitivity of the ∆ptp2msg5 double disruptant, we performed fluorescence-activated cell sorting analysis and found a delayed G1 phase. This delayed G1 was consistent with the defect in bud emergence, and reduced CLN2 transcription upon addition of CaCl2. We also found that Slt2p is hyper-phosphorylated in the Δptp2 Δmsg5 double disruptant and that the vacuole of the Δptp2 Δmsg5 double disruptant is fragmented even in the absence of Ca2+. These findings suggest that both Ptp2p and Msg5p are involved in the G1 to S transition and vacuole morphogenesis possibly through their regulation of Slt2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PPase:

Protein phosphatase

MAPK:

Mitogen-activated protein kinase

Cas :

Calcium sensitive

CWI:

Cell wall integrity

References

  • An X, Zhang Z, Yang K, Huang M (2006) Cotransport of the heterodimer small subunit of the Saccharomyces cerevisiae ribonucleotide reductase between the nucleus and the cytoplasm. Genetics 173:63–73

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular biology, vol 2. Wiley, Boston

    Google Scholar 

  • Batiza AF, Schulz T, Masson PH (1996) Yeast response to hypotonic shock with a calcium pulse. J Biol Chem 271:23357–23362

    Article  PubMed  CAS  Google Scholar 

  • Denis V, Cyert MS (2002) Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K (1994) MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J 13:61–70

    PubMed  CAS  Google Scholar 

  • Flandez M, Cosano IC, Nombela C, Martin H, Molina M (2004) Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 279:11027–11034

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Deschenes RJ, Dixon JE (1992) Isolation and characterization of a second protein tyrosine phosphatase gene, PTP2, from Saccharomyces cerevisiae. J Biol Chem 267:10024–10030

    PubMed  CAS  Google Scholar 

  • Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:177–191

    Google Scholar 

  • Haase SB, Lew DJ (1997) Flow cytomerotic analysis of DNA content in budding yeast. Methods Enzymol 283:322–332

    Article  PubMed  CAS  Google Scholar 

  • Hoffman-Sommer M, Migdalski A, Rytka J, Kucharczyk R (2005) Multiple function of the vacuolar sorting protein Ccz1 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 329(1):197–204

    Article  PubMed  CAS  Google Scholar 

  • Huang KN, Odinsky SA, Cross FR (1997) Structure-function analysis of the Saccharomyces cerevisiae G1 Cyclin Cln2. Mol Cel Biol 17:4654–4666

    CAS  Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  PubMed  CAS  Google Scholar 

  • Kellermayer R, Aiello DP, Miseta A, Bedwell DM (2003) Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Δ mutant of S. cerevisiae. J Cell Sci 116:1637–1646

    Article  PubMed  CAS  Google Scholar 

  • Kim KY, Truman AW, Levin DE (2008) Yeast Mpk1 mitogen-activated protein kinase actives transcription through Swi4/Swi6 by a noncatalytic mechanism that requires upstream signal. Mol Cell Biol 28:2579–2589

    Article  PubMed  CAS  Google Scholar 

  • Kitada K, Yamaguchi E, Arisawa M (1995) Cloning of the candida glabrata TRP1 and HIS3 genes, and construction of their disruptant strains by sequential integrative transformation. Gene 165:203–206

    Article  PubMed  CAS  Google Scholar 

  • Madden K, Sheu YJ, Baetz K, Andrews B, Snyder M (1997) SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784

    Article  PubMed  CAS  Google Scholar 

  • Martin H, Rodriguez-Pachon JM, Ruiz C, Nombela C, Molina M (2000) Regulatory mechanism for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 18:1511–1519

    Article  Google Scholar 

  • Mattison CP, Spencerm SS, Kresge KA, Lee J, Ota IM (1999) Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in the budding yeast by the protein tyrosine phosphatase Ptp2 and Ptp3. Mol Cell Biol 19:7651–7660

    PubMed  CAS  Google Scholar 

  • Mizunuma M, Hirata D, Miyakawa T (2005) Implication of Pkc1p protein kinase C in sustaining Cln2p level and polarized bud growth in response to calcium signaling in Saccharomyces cerevisiae. J Cell Sci 118:4219–4229

    Article  PubMed  CAS  Google Scholar 

  • Muller EM, Locke EG, Cunningham KW (2001) Differential regulation of two Ca2+ influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159:1527–1538

    PubMed  CAS  Google Scholar 

  • Queralt E, Igual JC (2004) Functional distinction between Cln1p and Cln2p cyclins in the control of the Saccharomyces cerevisiae mitotic cycle. Genetics 168:129–140

    Article  PubMed  CAS  Google Scholar 

  • Sakumoto N, Mukai Y, Uchida K, Kouchi T, Kuwajima J, Nakagawa Y, Sugioka S, Yamamoto E, Furuyama T, Mizubuchi H, Ohsugi N, Sakuno T, Kikuchi K, Matsuoka I, Ogawa N, Kaneko Y, Harashima S (1999) A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae. Yeast 15:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Sakumoto N, Matsuoka I, Mukai Y, Ogawa N, Kaneko Y, Harashima S (2002) A series of double disruptants for protein phosphatase genes in Saccharomyces cerevisiae and their phenotypic analysis. Yeast 19:587–599

    Article  PubMed  CAS  Google Scholar 

  • Seeley ES, Kato N, Margolis N, Wickner W, Eitzen G (2002) Genomic analysis of homotypic vacuole fusion. Mol Bio Cell 13:782–794

    Article  CAS  Google Scholar 

  • Sherman F, Hicks J (1991) Micromanipulation and dissection of Asci. Methods Enzymol 194:21–37 Guide to yeast genetics and molecular biology

    Article  PubMed  CAS  Google Scholar 

  • Vida TA, Emr SD (1995) A new stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Irie K, Matsumoto K (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15:5740–5749

    PubMed  CAS  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg C, Sugimoto K, Reed SI (1990) G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237

    Article  PubMed  CAS  Google Scholar 

  • Zarzov P, Mazzoni C, Mann C (1996) The SLT2 (MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J 15:83–91

    PubMed  CAS  Google Scholar 

  • Zolnierowicz S, Bollen M (2000) Protein phosphorylation and protein phosphatases. EMBO J 19:483–488

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research B, 2007 to 2009, to S.H. from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Harashima.

Additional information

Communicated by Axel Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermansyah, Sugiyama, M., Kaneko, Y. et al. Yeast protein phosphatases Ptp2p and Msg5p are involved in G1–S transition, CLN2 transcription, and vacuole morphogenesis. Arch Microbiol 191, 721–733 (2009). https://doi.org/10.1007/s00203-009-0498-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0498-3

Keywords

Navigation