Skip to main content
Log in

Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter radioresistens S13 is able to grow on phenol or benzoate as the sole carbon and energy source: both these compounds are catabolized through the β-ketoadipate pathway. Genes encoding the catabolic enzymes for degradation of aromatic compounds are localized on A. radioresistens S13 chromosome and organized in, at least, two distinct sets, one for benzoate degradation and another for phenol catabolism. In the present study, the growth and biodegradation kinetics for benzoate and phenol, and an easily metabolized substrate (acetate) were established. Benzoate was degraded slower and supports a less rapid and efficient growth than either acetate or phenol. A combined transcript-proteomic analysis of some of the major catabolic genes and their products nonetheless has shown that benzoate induces the expression of both benzoate and phenol catabolic operons. This result was confirmed by the fact that benzoate-acclimatized bacteria were rapidly able to degrade phenol too. Finally, the growth and biodegradation kinetics for different mixtures of acetate, benzoate and phenol were determined. Results indicate that a hierarchy of substrate utilization, benzoate > acetate > phenol, occurred: benzoate was the preferred substrate, despite its lower growth and biodegradation parameters. Hypotheses explaining these unusual metabolic features of A. radioresistens S13 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

PH:

Phenol hydroxylase and its components (PHO oxygenase, PHR reductase, PHI intermediate)

BD:

Benzoate dioxygenase and its components (BDR reductase, BDO oxygenase)

DHBDH:

Dihydroxybenzoate dehydrogenase

C12O IsoA (gene catA A ):

Catechol 1,2-dioxygenase isoenzyme A

C12O IsoB (gene catA B ):

Catechol 1,2-dioxygenase isoenzyme B

MCI (gene catB):

Muconate cycloisomerase

MLI (gene catC):

Muconolactone isomerase

β-KT:

β-ketoadipil-CoA thiolase

BenA :

The gene encoding BDOα

MopN :

The gene encoding PHOα

μ:

Bacterial specific growth rate

q X :

Substrate consumption rate

Y X/S :

Bacterial growth yield

Cmmol:

Millimoles of carbon

References

  • Ampe F (1995) PhD Thesis, INSA-Toulouse, Toulouse

  • Ampe F, Lindley ND (1995) Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme-A synthetase. J Bacteriol 177:5826–5833

    PubMed  CAS  Google Scholar 

  • Ampe F, Lindley ND (1996) Flux limitations in the ortho pathway of benzoate degradation of Alcaligenes eutrophus: metabolite overflow and induction of the meta pathway at high substrate concentrations. Microbiology 142:1807–1817

    Article  PubMed  CAS  Google Scholar 

  • Ampe F, Leonard D, Lindley ND (1996) Growth performance and flux determine substrate preference of Alcaligenes eutrophus during growth on acetate plus aromatic compound mixtures. Appl Microbiol Biotechnol 46:562–569

    Article  CAS  Google Scholar 

  • Ampe F, Uribelarrea JL, Aragao GMF, Lindley ND (1997) Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate. Appl Environ Microbiol 63:2765–2770

    PubMed  CAS  Google Scholar 

  • Ampe F, Leonard D, Lindley ND (1998) Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl Environ Microbiol 64:1–6

    PubMed  CAS  Google Scholar 

  • Brzostowicz PC, Reams AB, Clark TJ, Neidle EL (2003) Transcriptional cross-regulation of the catechol and protocatechuate branches of the β-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Appl Environ Microbiol 60:1598–1606

    Article  CAS  Google Scholar 

  • Caposio P, Pessione E, Giuffrida MG, Conti A, Landolfo S, Giunta C, Gribaudo G (2002) Cloning and characterization of two catechol 1,2-dioxygenase genes from Acinetobacter radioresistens S13. Res Microbiol 153:69–74

    Article  PubMed  CAS  Google Scholar 

  • Cases I, de Lorenzo V (2005) Promoters in the environment: transcriptional regulation in its natural context. Nat Rev Microbiol 3:105–118

    Article  PubMed  CAS  Google Scholar 

  • Clark TJ, Momany C, Neidle EL (2002) The benPK operon, proposed to play a role in transport, is part of a regulon for benzoate catabolism in Acinetobacter sp. Strain ADPI. Microbiology 148:1213–1223

    PubMed  CAS  Google Scholar 

  • Collier DN, Hager PW, Phibbs PV Jr (1996) Catabolite repression control in the Pseudomonads. Res Microbiol 147:551–561

    Article  PubMed  CAS  Google Scholar 

  • Dal S, Steiner I, Gerischer U (2002) Multiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression. J Mol Microbiol Biotechnol 4:389–404

    PubMed  CAS  Google Scholar 

  • Divari S, Valetti F, Caposio P, Pessione E, Cavaletto M, Griva E, Gribaudo G, Gilardi G, Giunta C (2003) The oxygenase component of phenol hydroxylase from Acinetobacter radioresistens S13. Eur J Biochem 270:2244–2253

    Article  PubMed  CAS  Google Scholar 

  • Fontaine L, Even S, Soucaille P, Lindley ND, Cocaign-Bousquet M (2001) Transcript quantification based on chemical labeling of RNA associated with fluorescent detection. Anal Biochem 298:246–252

    Article  PubMed  CAS  Google Scholar 

  • Gaines GL III, Smith L, Neidle EL (1996) Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. J Bacteriol 178:6833–6841

    PubMed  CAS  Google Scholar 

  • Giuffrida MG, Pessione E, Mazzoli R, Dellavalle G, Barello C, Conti A, Giunta C (2001) Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Electrophoresis 22:1705–1711

    Article  PubMed  CAS  Google Scholar 

  • Griva E, Pessione E, Divari S, Valetti F, Cavaletto M, Rossi GL, Giunta C (2003) Phenol hydroxylase from Acinetobacter radioresistens S13. Isolation and characterization of the regulatory component. Eur J Biochem 270:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Harayama S (1991) Induction kinetics of RNA and proteins in exponentially growing organisms. Biochem Biophys Res Commun 180:913–919

    Article  PubMed  CAS  Google Scholar 

  • Heinaru E, Viggor S, Vedler E, Truu J, Merimaa M, Heinaru A (2001) Reversible accumulation of p-hydroxybenzoate and catechol determines the sequential decomposition of phenolic compounds in mixed substrate cultivations in pseudomonads. FEMS Microbiol Ecol 37:79–89

    Article  CAS  Google Scholar 

  • Juni E (1978) Genetics and physiology of Acinetobacter. Annu Rev Microbiol 32:349–371

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Song SY, Kim KW, Ho EM, Oh KH (2003) Proteomic analysis of the benzoate degradation pathway in Acinetobacter sp. KS-1. Res Microbiol 154:697–703

    Article  PubMed  CAS  Google Scholar 

  • Lallai A, Mura G (1989) pH variations during phenol biodegradation in mixed cultures of microorganisms. Water Res 23:1335–1338

    Article  CAS  Google Scholar 

  • Lallai A, Mura G, Miliddi R, Mastinu C (1988) Effect of pH on growth of mixed cultures in batch reactor. Biotechnol Bioeng 31:130–134

    Article  CAS  PubMed  Google Scholar 

  • Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, Lee KH (2003) Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84:834–841

    Article  PubMed  CAS  Google Scholar 

  • MacGregor CH, Wolff JA, Arora SK, Hylemon PB, Phibbs PV (1992) Catabolite repression control in Pseudomonas aeruginosa. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington DC, pp 198–206

    Google Scholar 

  • McFall SM, Abraham B, Narsolis CG, Chakrabarty AM (1997) A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon. J Bacteriol 179:6729–6735

    PubMed  CAS  Google Scholar 

  • Mehra A, Lee KH, Hatzimanikatis V (2003) Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol Bioeng 84:822–833

    Article  PubMed  CAS  Google Scholar 

  • Messer M, Griffiths M, Rismiller PD, Shaw DC (1997) Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna alpha-lactalbumin. Comp Biochem Physiol B Biochem Mol Biol 118:403–410

    Article  PubMed  CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244

    PubMed  CAS  Google Scholar 

  • Nichols NN, Harwood CS (1995) Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida β-ketoadipate pathway. J Bacteriol 177:7033–7040

    PubMed  CAS  Google Scholar 

  • Nichols NN, Harwood CS (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179:5056–5061

    PubMed  CAS  Google Scholar 

  • Perez-Pantoja D, Ledger T, Pieper DH, Gonzalez B (2003) Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Pessione E, Giunta C (1997) Acinetobacter radioresistens metabolizing aromatic compounds. 2. Biochemical and microbiological characterization of the strain. Microbios 89:105–117

    PubMed  CAS  Google Scholar 

  • Pessione E, Bosco F, Specchia V, Giunta C (1996) Acinetobacter radioresistens metabolizing aromatic compounds. 1. Optimization of the operative conditions for phenol degradation. Microbios 88:213–221

    PubMed  CAS  Google Scholar 

  • Pessione E, Divari S, Griva E, Cavaletto M, Rossi GL, Gilardi G, Giunta C (1999) Phenol hydroxylase from Acinetobacter radioresistens is a multicomponent enzyme. Purification and characterization of the reductase moiety. Eur J Biochem 265:549–555

    Article  PubMed  CAS  Google Scholar 

  • Pessione E, Giuffrida MG, Mazzoli R, Caposio P, Landolfo S, Conti A, Giunta C, Gribaudo G (2001) The catechol 1,2 dioxygenase system of Acinetobacter radioresistens: isoenzymes, inductors and gene localisation. Biol Chem 382:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Pessione E, Giuffrida MG, Prunotto L, Barello C, Mazzoli R, Fortunato D, Conti A, Giunta C (2003) Membrane proteome of Acinetobacter radioresistens S13 during aromatic exposure. Proteomics 3:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    Article  PubMed  CAS  Google Scholar 

  • Ross T, McMeekin TA (2003) Modeling microbial growth within food safety risk assessments. Risk Anal 23:179–197

    Article  PubMed  Google Scholar 

  • Saier MH (1998) Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 58:170–174

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanchez JC, Rouge V, Pisteur M, Ravier F, Tonella L, Moosmayer M, Wilkins MR, Hochstrasser DF (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18:324–327

    Article  PubMed  CAS  Google Scholar 

  • Schirmer F, Hillen W (1998) The Acinetobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3′ CatA-encoding segment than of the 5′ phenolhydroxylase-encoding portion. Mol Gen Genet 257:330–337

    PubMed  CAS  Google Scholar 

  • Sokol W, Howell JA (1981) Kinetics of phenol oxydation by washed cells. Biotechnol Bioeng 23:2039–2049

    Article  CAS  Google Scholar 

  • Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Sergine Even for invaluable aid in the optimization of transcript techniques. This study received financial support from FIRB. Roberto Mazzoli received a European Union Marie Curie Training Site grant (HPMT-2000-00135) while travel expenses were possible due to financial support from the Franco-Italian Galileo bilateral support scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Mazzoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PPT 155 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzoli, R., Pessione, E., Giuffrida, M.G. et al. Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Arch Microbiol 188, 55–68 (2007). https://doi.org/10.1007/s00203-007-0223-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0223-z

Keywords

Navigation