Skip to main content
Log in

Genomics of the ccoNOQP-encoded cbb 3 oxidase complex in bacteria

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Many bacteria adapt to microoxic conditions by synthesizing a particular cytochrome c oxidase (cbb 3) complex with a high affinity for O2, encoded by the ccoNOQP operon. A survey of genome databases indicates that ccoNOQP sequences are widespread in all sub-branches of Proteobacteria but otherwise are found only in bacteria of the CFB group (Cytophaga, Flexibacter, Bacteroides). Our analysis of available genome sequences suggests four major strategies of regulating ccoNOQP expression in response to O2. The most widespread strategy involves direct regulation by the O2-responsive protein Fnr. The second strategy involves an O2-insensitive paralogue of Fnr, FixK, whose expression is regulated by the O2-responding FixLJ two-component system. A third strategy of mixed regulation operates in bacteria carrying both fnr and fixLJ-fixK genes. Another, not yet identified, strategy is likely to operate in the ε-Proteobacteria Helicobacter pylori and Campylobacter jejuni which lack fnr and fixLJ-fixK genes. The FixLJ strategy appears specific for the α-subclass of Proteobacteria but is not restricted to rhizobia in which it was originally discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anraku Y (1988) Bacterial electron transport chains. Annu Rev Biochem 57:101–132

    Article  CAS  PubMed  Google Scholar 

  • Batut J, Daveran-Mingot ML, David M, Jacobs J, Garnerone AM, Kahn D (1989) fixK, a gene homologous with fnr and crp from Escherichia coli, regulates nitrogen fixation genes both positively and negatively in Rhizobium meliloti. EMBO J 8:1279–1286

    CAS  PubMed  Google Scholar 

  • Colombo MV, Gutierrez D, Palacios JM, Imperial J, Ruiz-Argueso T (2000) A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae. Mol Microbiol 2000 36:477–86

    Article  CAS  Google Scholar 

  • Delgado MJ, Bedmar EJ, Downie JA (1998) Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol 40:191–231

    CAS  PubMed  Google Scholar 

  • Fischer HM (1996) Environmental regulation of rhizobial symbiotic nitrogen fixation genes. Trends Microbiol 4:317–320

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB (1994) The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600

    CAS  PubMed  Google Scholar 

  • Layzell D, Hunt S, Palmer GR (1990) Mechanism of nitrogenase inhibition in soybean nodules, Pulse-modulated spectroscopy indicates that nitrogenase activity is limited by O2. Plant Physiol. 92:1101–1107.

    Google Scholar 

  • Lopez O, Morera C, Miranda-Rios J, Girard L, Romero D, Soberon M (2001) Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation. J Bacteriol 183:6999.-7006

    Article  CAS  PubMed  Google Scholar 

  • Mandon K, Kaminski PA, Elmerich C (1994) Functional analysis of the fixNOQP region of Azorhizobium caulinodans. J Bacteriol 176:2560–2568

    CAS  PubMed  Google Scholar 

  • Marchal K, Sun J, Keijers V, Haaker H, Vanderleyden J (1998) A cytochrome cbb3 (cytochrome c) terminal oxidase in Azospirillum brasilense Sp7 supports microaerobic growth. J Bacteriol 180:5689–5696

    CAS  PubMed  Google Scholar 

  • Monson EK, Ditta GS, Helinski DR (1995) The oxygen sensor protein, FixL, of Rhizobium meliloti. Role of histidine residues in heme binding, phosphorylation, and signal transduction. J Biol Chem 270:5243–5250

    Article  CAS  PubMed  Google Scholar 

  • Mouncey NJ, Kaplan S (1998) Oxygen regulation of the ccoN gene encoding a component of the cbb 3 oxidase in Rhodobacter sphaeroides 2.4.1T: involvement of the FnrL protein. J Bacteriol 180:2228–2231

    CAS  PubMed  Google Scholar 

  • Mukai M, Nakamura K, Nakamura H, Iizuka T, Shiro Y (2000) Roles of Ile209 and Ile210 on the heme pocket structure and regulation of histidine kinase activity of oxygen sensor FixL from Rhizobium meliloti. Biochemistry 39:13810–13816

    Article  CAS  PubMed  Google Scholar 

  • Myllykallio H, Liebl U (2000) Dual role for cytochrome cbb 3 oxidase in clinically relevant Proteobacteria? Trends Microbiol 8:542–543

    Article  CAS  PubMed  Google Scholar 

  • Oh JI, Kaplan S (1999) The cbb 3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation. Biochemistry 38:2688–2696

    Article  CAS  PubMed  Google Scholar 

  • Oh JI, Kaplan S (2002) Oxygen adaptation. The role of the CcoQ subunit of the cbb 3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1. J Biol Chem 277:16220–16228

    Article  CAS  PubMed  Google Scholar 

  • Otten MF, Stork DM, Reijnders WN, Westerhoff HV, van Spanning RJ (2001) Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur J Biochem 268:2486–2497

    Article  CAS  PubMed  Google Scholar 

  • Pereira MM, Carita JN, Anglin R, Saraste M, Teixeira M (2000) Heme centers of Rhodothermus marinus respiratory chain. Characterization of its cbb 3 oxidase. J Bioenerg Biomembr 32:143–152

    Article  CAS  PubMed  Google Scholar 

  • Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208

    Article  CAS  PubMed  Google Scholar 

  • Pitcher RS, Cheesman MR, Watmough NJ (2002) Molecular and spectroscopic analysis of the cytochrome cbb 3 oxidase from Pseudomonas stutzeri. J Biol Chem 277:31474–31483

    Article  CAS  PubMed  Google Scholar 

  • Preisig O, Anthamatten D, Hennecke H (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 90:3309–3313

    CAS  PubMed  Google Scholar 

  • Ray A, Williams HD (1997) The effects of mutation of the anr gene on the aerobic respiratory chain of Pseudomonas aeruginosa. FEMS Microbiol Lett 156:227–232

    Article  CAS  PubMed  Google Scholar 

  • Roh JH, Kaplan S (2002) Interdependent expression of the ccoNOQP-rdxBHIS loci in Rhodobacter sphaeroides 2.4.1. J Bacteriol 184:5330–5338

    Article  CAS  PubMed  Google Scholar 

  • Schlüter A, Patschkowski T, Quandt J, Selinger LB, Weidner S, Kramer M, Zhou L, Hynes MF, Priefer UB (1997) Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact 10:605–616

    PubMed  Google Scholar 

  • Smith MA, Finel M, Korolik V, Mendz GL (2000) Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch Microbiol 174:1–10

    Article  CAS  PubMed  Google Scholar 

  • Soupène E, Foussard M., Boistard P., Truchet G., Batut J (1995) Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci USA 92:3759–3763

    PubMed  Google Scholar 

  • Swem DL, Bauer CE (2002) Coordination of ubiquinol oxidase and cytochrome cbb 3 oxidase expression by multiple regulators in Rhodobacter capsulatus. J Bacteriol 184:2815–2820

    Article  CAS  PubMed  Google Scholar 

  • Turner SL, Zhang XX, Li FD, Young JP (2002) What does a bacterial genome sequence represent? Mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. Microbiology 148:3330–3331

    CAS  PubMed  Google Scholar 

  • Zufferey R, Preisig O, Hennecke H, Thony-Meyer L (1996) Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem 271:9114–9119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr J.V. Cullimore and members of J. Batut’s team for critical reading of the manuscript. Céline Cosseau was supported by a doctoral fellowship from the French Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Batut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosseau, C., Batut, J. Genomics of the ccoNOQP-encoded cbb 3 oxidase complex in bacteria. Arch Microbiol 181, 89–96 (2004). https://doi.org/10.1007/s00203-003-0641-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0641-5

Keywords

Navigation