Skip to main content
Log in

A comparative study of bchG from green photosynthetic bacteria

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The gene bchG, coding for bacteriochlorophyll a synthase from a variety of green sulfur bacteria and the filamentous anoxygenic phototrophic bacteria, Chloroflexus aurantiacus, Chloronema sp., and Roseiflexus castenholzii HL08, was partially sequenced and compared. The deduced amino acid consensus sequences for green sulfur bacteria and green filamentous anoxygenic phototrophic bacteria were found to belong to the UbiA enzyme family of polyprenyltransferases with the most similar sequences being those of photosynthetic organisms. All deduced amino acid sequences showed a highly conserved region, which includes the motif DRXXD, characteristic of polyprenyltransferases, which was extended to DREVDAINEP for green sulfur bacteria. Neighbor-joining analysis of a protein similitude matrix displayed a relatively high distance between green sulfur bacteria and the other groups. Sequences from green sulfur bacteria were more closely related to those of purple bacteria than to those of filamentous anoxygenic phototrophic bacteria. In addition, internal grouping within green sulfur bacteria was congruent regarding taxonomic features including cell shape, presence of gas vacuoles and NaCl requirement. In addition to bchlG, another gene encoding for a second chlorophyll synthetase, previously tentatively identified as chlG, was also found in Chlorobium tepidum, showing the highest similarities with polyprenyltransferases from chlorophyll-a-containing organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

Chl:

Chlorophyll

References

  • Abella CA, Garcia-Gil LJ (1992) Microbial Ecology of planktonic filamentous phototrophic bacteria in freshwater lakes. Hydrobiologia 243:87–89

    Google Scholar 

  • Addlesee HA, Fiedor L, Neil HC (2000) Physical mapping of bchG, orf427, and orf177 in the photosynthesis gene cluster of Rhodobacter sphaeroides: functional assignment of the bacteriochlorophyll synthetase gene. J Bacteriol 182:3175–3182.

    Article  CAS  PubMed  Google Scholar 

  • Airs R, Borrego C, Garcia-Gil LJ, Kelly BJ (2001) Identification of the bacteriochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynth Res 70:221–230

    Article  CAS  Google Scholar 

  • Alberti M, Burke DH, Hearst JE (1995) Structure and sequence of the photosynthetic gene cluster. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxigenic photosynthetic bacteria. Kluwer, Dordrecht, pp 1083–1106

  • Altschul SF Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Blankenship RE (2001) Molecular evidence for the evolution of photosynthesis. Trends Plant Sci 6:4–6

    Article  CAS  PubMed  Google Scholar 

  • Boomer SM, Pierson BK, Austinhirst R, Castenholz RW (2000) Characterization of novel bacteriochlorophyll-a-containing red filaments from alkaline hot springs in Yellowstone National Park. Arch Microbiol 174:152–161

    Article  CAS  PubMed  Google Scholar 

  • Borrego CM, Garcia-Gil LJ, Cristina X, Vila X, Abella CA (1998) Occurrence of new BChl d forms in natural populations of green photosynthetic sulfur bacteria. FEMS Microbiol Ecol 26:257–267

    CAS  Google Scholar 

  • Choudhary M, Kaplan S (2000) DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1. Nucleic Acids Res 28:862–867

    Article  CAS  PubMed  Google Scholar 

  • Dayhoff MO (1979) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington, D.C.

  • Eisen JA, Nelson KE, Paulsen IT,. Heidelberg JF, Wu M,. Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, et al (2002) The complete genome sequence of the green sulfur bacterium Chlorobium tepidum. Proc Natl Acad Sci USA 99:9509–9514

    Article  CAS  PubMed  Google Scholar 

  • Figueras JB, Garcia-Gil LJ, Abella CA (1997) Phylogeny of the genus Chlorobium based on 16S rDNA sequence. FEMS Microbiol Lett 152:31–36

    CAS  Google Scholar 

  • Frigaard N-U, Voigt GD, Bryant DA (2002) A bacteriochlorophyll c-less mutant of Chlorobium tepidum made by inactivation of the bchK gene encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376

    Article  CAS  PubMed  Google Scholar 

  • Gaubier P, Wu HJ, Laudie M, Delseny M, Grellet F (1995) A chlorophyll synthetase gene from Arabidopsis thaliana. Mol Gen Genet 249:58–64

    CAS  PubMed  Google Scholar 

  • Gich FB, Borrego CM, Martinez-Planells A, Steensgaard DB, Holzwarth AR, Garcia-Gil LJ (2001a) Variability of the photosynthetic antenna of a Pelodictyon clahratiforme population from a freshwater holomictic pond. FEMS Microbiol Ecol 37:11–19

    Article  CAS  Google Scholar 

  • Gich FB, Garcia-Gil LJ, Overmann J (2001b) Uncharacterized and phyllogenetically diverse members of the green nonsulfur bacteria phylum are indigenous to freshwater lakes. Arch Microbiol 177:1–10

    Article  CAS  PubMed  Google Scholar 

  • Gloe A, Risch N (1978) Bacteriochlorophyll c s, a new bacteriochlorophyll from Chloroflexus aurantiacus. Arch Microbiol 118:153–156

    CAS  PubMed  Google Scholar 

  • Gloe A, Pfennig N, Brockmann H Jr, Trowitzsch W (1975) A new bacteriochlorophyll from brown-colored Chlorobiaceae. Arch Microbiol 102:103–109

    CAS  PubMed  Google Scholar 

  • Hanada, S.; Takaichi, S.; Matsuura, K., and Nakamura, K. Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 2002 52:187–193.

    Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res 3:185–209

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe, A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, et al (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Watanabe T, Ikegami I, van de Meent EJ, Amesz J (1991) Enrichment of bacteriochlorophyll g' in membranes of Heliobacterium chlorum by ether extraction. Unequivocal evidence for its existence in vivo. FEBS Lett 284:129–31

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Oh-oka H, Akutsu S, Akiyama M, Tominaga K, Kise H, Nishida F, Watanabe T, Amesz J, Koizumi M, Ishida N and Kano H (2000) The primary acceptor of green sulfur bacteria, bacteriochlorophyll 663, is chlorophyll a esterified with Δ2,6-phytadienol. Photosynth Res 63:269–280

    Article  CAS  Google Scholar 

  • Lopez JC, Ryan S, Blankenship RE (1996) Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol 178:3369–3373

    CAS  PubMed  Google Scholar 

  • Martinez-Planells A, Arellano JB, Borrego CM, Lopez-Iglesias C, Gich FB, Garcia-Gil LJ (2002) Topography and biometrics of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90

    Article  CAS  Google Scholar 

  • Mendez-Alvarez S, Ramirez-Moreno S, Gaju N (2001) Molecular taxonomy of the genus Chlorobium. Crit Rev Microbiol 27:9–24

    CAS  PubMed  Google Scholar 

  • Naylor GW, Adlesee HA, Gibson LCD, Hunter CN (1999) The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth Res 62:121–139

    Article  CAS  Google Scholar 

  • Niedermeier G, Shiozawa JA, Lottspeich F, Feick RG (1994) The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342:61–65

    Article  CAS  PubMed  Google Scholar 

  • Oster U, Bauer CE, Rudiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272:9671–9676

    CAS  PubMed  Google Scholar 

  • Overmann J (2001) Green sulfur bacteria. In: Boone DR, Castenholz RW (eds) Bergey's manual of systematic bacteriology, 2nd edn, vol 1. Springer, Berlin Heidleberg New York, pp 601–623

  • Overmann J, Tuschak C (1997) Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch Microbiol 167:302–309

    CAS  PubMed  Google Scholar 

  • Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9:47–53

    CAS  PubMed  Google Scholar 

  • Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98

    CAS  PubMed  Google Scholar 

  • Pierson BV, Castenholz RW (1995) Taxonomy and physiology of filamentous anoxigenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxigenic photosynthetic bacteria. Kluwer, Dordrecht, pp 31–47

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shoch S, Oster U, Mayer K, Feick R, Rüdiger W (1999) Substrate specificity of overexpressed bacteriochlorophyll synthase from Chloroflexus aurantiacus. In: Agryroudi-Akoyunoglou JH, Senger H (eds) The chloroplast: from molecular biology to biotechnology. Kluwer, Dordrecht, pp 213--226

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–82

    CAS  PubMed  Google Scholar 

  • Van Gemerden H, Mas J (1995) Ecology of phototrophic sulphur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxigenic photosynthetic bacteria. Kluwer, Dordrecht, pp 49–85

  • Vila X, Abella CA (1994) Effects of light quality on the physiology and the ecology of green sulfur bacteria in the water column of lakes. Photosynth Res 41:53–65

    CAS  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90

    CAS  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    Google Scholar 

  • Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Preliminary sequence data from the genome of Chlorobium tepidum were obtained from The Institute for Genomic Research website at http://www.tigr.org. We are thankful to Drs. Lluís Bañeras and Jordi Figueras for their help in the design of the degenerate primers, to Dr. Carles Borrego and Dr. Juan Arellano for critically reading the manuscript, and to Dr. Ruth Airs for assistance with the English language. We also wish to thank the Area of Genetics of the Department of Biology (University of Girona) and the Research Services of the University of Barcelona for sequencing facilities. Thanks are due to Drs. Beverly Pierson (University of Puget Sound, USA) and Satoshi Hanada (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan )for providing genomic DNA of Roseiflexus castenholzii and Chloroflexus aurantiacus, respectively, and especially to Prof. Donald A. Bryant (Pennsylvania State University, USA) for kindly providing information on bacteriochlorophyll synthetases function assignment. Thanks are also due to Prof. Robert E. Blankenship (Arizona State University, USA) for help in the discussion. This work was partially funded by a TMR project of the European Union (IVth frame program), contract number FMRX-CT96–0081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Jesús Garcia-Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Gil, L.J., Gich, F.B. & Fuentes-Garcia, X. A comparative study of bchG from green photosynthetic bacteria. Arch Microbiol 179, 108–115 (2003). https://doi.org/10.1007/s00203-002-0506-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0506-3

Keywords

Navigation