Skip to main content

Advertisement

Log in

Interleaved quadratic boost DC–DC converter with high voltage gain capability

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a novel high-gain DC–DC converter which is suitable for integrating low-voltage renewable energy source with a common DC bus is presented. The proposed converter is synthesised from a quadratic boost converter (QBC). Two QBC structures are interleaved to reduce the current ripple at the input port (12.9% of input current). The voltage conversion ratio of the proposed interleaved quadratic boost converter (IQBC) is extended by using the voltage lift technique. The energy storage inductors are judiciously coupled to realise a compact IQBC. Experimental results obtained from a 24 to 380 V, 100 W prototype converter validate the novel gain extension method and proposed design concepts. Under full-load condition, the practical efficiency value of the proposed converter is 92.49%. By implementing a simple closed loop, the output voltage of the proposed converter is regulated and maintained constant at 380 V when the input voltage and load current change. Under practical conditions, the percentage voltage regulation and the time response characteristics of the proposed IQBC are extremely satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tripathi L, Mishra AK, Dubey AK, Tripathi CB, Baredar P (2016) Renewable energy: an overview on its contribution in current energy scenario of India. Renew Sustain Energy Rev 60:226–233

    Article  Google Scholar 

  2. Kuang Y et al (2016) A review of renewable energy utilization in islands. Renew Sustain Energy Rev 59:504–513

    Article  Google Scholar 

  3. Li W, He X (2011) Review of non-isolated high-step-up DC/DC converters in photovoltaic grid connected applications. IEEE Trans Industr Electron 58(4):1239–1250

    Article  Google Scholar 

  4. Vighetti S, Ferrieux JP, Lembeye Y (2012) Optimization and design of a cascaded DC–DC converter devoted to grid-connected photovoltaic systems. IEEE Trans Power Electron 27(4):2018–2027

    Article  Google Scholar 

  5. Sri Revathi B, Prabhakar M (2016) Non isolated high gain DC–DC converter topologies for PV applications—a comprehensive review. Renew Sustain Energy Rev 66:920–933

    Article  Google Scholar 

  6. Ye Y, Cheng KWE (2014) Quadratic boost converter with low buffer capacitor stress. IET Power Electron 7(5):1162–1170

    Article  Google Scholar 

  7. Schmitz L, Martins DC, Coelho RF (2017) Generalized high step-up DC–DC boost-based converter with gain cell. IEEE Trans Circuits Syst I Regul Pap 64(2):480–493

    Article  Google Scholar 

  8. Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B (2017) Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans Power Electron 32(12):9143–9178

    Article  Google Scholar 

  9. Tofoli FL, de Castro Pereira D, de Paula WJ et al (2015) Survey on nonisolated high-voltage step-up DC–DC topologies based on the boost converter. IET Power Electron 8(10):2044–2057

    Article  Google Scholar 

  10. Zhang X, Green TC (2015) The modular multilevel converter for high step-up ratio DC–DC conversion. IEEE Trans Industr Electron 62(8):4925–4936

    Article  Google Scholar 

  11. Axelrod B, Beck Y, Berkovich Y (2015) High step-up DC–DC converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: steady state and dynamics. IET Power Electron 8(8):1420–1428

    Article  Google Scholar 

  12. Girish Ganesan R, Prabhakar M (2014) Non-isolated high step-up interleaved boost converter. Int J Power Electron 6(3):288

    Article  Google Scholar 

  13. Chen Z, Jianping X, Zhou Q (2015) Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current. IET Power Electron 8(2):213–220

    Article  Google Scholar 

  14. Sri Revathi B, Mahalingam P (2018) Non-isolated high gain DC–DC converter with low device stress and input current ripple. IET Power Electron 11(15):2553–2562

    Article  Google Scholar 

  15. Liu H, Haibing H, Hongfei W, Xing Y, Batarseh I (2016) Overview of high-step-up coupled-inductor boost converters. IEEE J Emerg Sel Top Power Electron 4(2):689–704

    Article  Google Scholar 

  16. Lee S-W, Do H-L (2018) High step-up coupled-inductor cascade boost DC–DC converter with lossless passive snubber. IEEE Trans Industr Electron 65(10):7753–7761

    Article  Google Scholar 

  17. Xuefeng H, Wang J, Wang J, Li Y (2018) A three-winding coupled-inductor DC–DC converter topology with high voltage gain and reduced switch stress. IEEE Trans Power Electron 33(2):1453–1462

    Article  Google Scholar 

  18. Xuefeng H, Gao B, Wang Q, Li L, Chen H (2018) A zero-ripple input current boost converter for high-gain applications. IEEE J Emerg Sel Top Power Electron 6(1):246–254

    Article  Google Scholar 

  19. Sizkoohi HM, Milimonfared J, Taheri M, Salehi S (2015) High step-up soft-switched dual-boost coupled-inductor-based converter integrating multipurpose coupled inductors with capacitor-diode stages. IET Power Electron 8(9):1786–1797

    Article  Google Scholar 

  20. Gang W, Ruan X, Ye Z (2017) Non-isolated high step-up DC–DC converter adopting auxiliary capacitor and coupled inductor. J Mod Power Syst Clean Energy 6(2):384–398

    Google Scholar 

  21. Muhammad M, Armstrong M, Elgendy MA (2017) Analysis and implementation of high-gain non-isolated DC–DC boost converter. IET Power Electron 10(11):1241–1249

    Article  Google Scholar 

  22. Ai J, Lin M (2017) Ultra-large gain step-up coupled-inductor DC–DC converter with an asymmetric voltage multiplier network for a sustainable energy system. IEEE Trans Power Electron 32(9):6896–6903

    Article  Google Scholar 

  23. Andrade AMSS, Mattos E, Schuch L, Hey HL, da Silva Martins ML (2018) Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells. IEEE Trans Power Electron 33(7):5880–5897

    Article  Google Scholar 

  24. Gao W, Zhang Y, Lv X, Lou Q (2017) Non-isolated high-step-up soft switching DC/DC converter with low-voltage stress. IET Power Electron 10(1):120–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Mahalingam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuel, V.J., Keerthi, G. & Mahalingam, P. Interleaved quadratic boost DC–DC converter with high voltage gain capability. Electr Eng 102, 651–662 (2020). https://doi.org/10.1007/s00202-019-00901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00901-x

Keywords

Navigation