Skip to main content
Log in

Abstract

Elementary techniques from operational calculus, differential algebra, and noncommutative algebra lead to a new approach for change-point detection, which is an important field of investigation in various areas of applied sciences and engineering. Several successful numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs (1993). Available online at http://www.irisa.fr/sisthem/kniga/

  2. Belkoura L.: Change point detection with application to the identification of a switching process. In: El Jai, A., Afifi, L., Zerrik, E. (eds.) Systems Theory: Modelling, Analysis and Control, International Conference Fes (Morocco), pp. 409–415, Presses Universitaires de Perpignan (2009). Available online at http://hal.inria.fr/inria-00363679/en/

  3. Belkoura L., Richard J.-P., Fliess M.: Parameters estimation of systems with delayed and structered entries. Automatica 45, 1117–1125 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brodsky B.E., Darkhovsky B.S.: Nonparametric Methods in Change-Point Problems. Kluwer, Dordrecht (1993)

    Google Scholar 

  5. Brodsky B.E., Darkhovsky B.S.: Non-Parametric Statistical Diagnosis: Problems and Methods. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  6. Chambert-Loir, A.: Algèbre corporelle, Éditions École Polytechnique, Palaiseau (2005). English Translation: A Field Guide to Algebra. Springer, Berlin (2005)

  7. Chen W.K.: Passive and Active Filters: Theory and Implementations. Wiley, London (1986)

    Google Scholar 

  8. Csörgö M., Horváth L.: Limit Theorems in Change-Point Analysis. Wiley, London (1997)

    MATH  Google Scholar 

  9. Dragotti P.L., Vitterli M.: Wavelets footprints: theory, algorithms, and applications. IEEE Trans. Signal Proc. 51, 1306–1323 (2003)

    Article  Google Scholar 

  10. Flajolet P., Sedgewick R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Fliess M.: Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser. I 342, 797–802 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Fliess, M.: Critique du rapport signal à bruit en communications numériques. ARIMA 9, pp. 419–429 (2008). Available online at http://hal.inria.fr/inria-00311719/en/

  13. Fliess M., Join C.: Towards new technical indicators for trading systems and risk management. In: 15 IFAC Symposium on System Identification, Saint-Malo (2009). Available online at http://hal.inria.fr/inria-00370168/en/

  14. Fliess, M., Join, C.: Systematic risk analysis: first steps towards a new definition of beta. In: COGIS’09, Paris (2009). Available online at http://hal.inria.fr/inria-00425077/en/

  15. Fliess M., Join C., Sira-Ramírez H.: Non-linear estimation is easy. Int. J. Model. Identif. Control 4, 12–27 (2008)

    Article  Google Scholar 

  16. Fliess, M., Join, C., Mboup, M., Sira-Ramírez, H.: Analyse et représentation de signaux transitoires: application à la compression, au débruitage et à la détection de ruptures. 20e Coll. GRETSI, Louvain-la-Neuve (2005). Available online at http://hal.inria.fr/inria-00001115/en/

  17. Fliess, M., Mboup, M., Mounier, H., Sira-Ramírez, H.: Questioning some paradigms of signal processing via concrete examples. In: Sira-Ramírez, H., Silva-Navarro, G. (eds.) Algebraic Methods in Flatness, Signal Processing and State Estimation, pp. 1–21, Editiorial Lagares (2003). Available online at http://hal.inria.fr/inria-00001059/en/

  18. Fliess M., Sira-Ramírez H.: An algebraic framework for linear identification. ESAIM Control Optim. Calc. Variat. 9, 151–168 (2003)

    MATH  Google Scholar 

  19. Fliess M., Sira-Ramírez H.: Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques. In: Garnier, H., Wang, L. Identification of Continuous-Time Model Identification from Sampled Data, pp. 363–391. Springer, Berlin (2008)

  20. Gijbels I., Hall P., Kneip A.: On the estimation of jump points in smooth curves. Ann. Instit. Statistical Math. 51, 231–251 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lavielle M.: Using penalized contrasts for change-point problem. Signal Processing 85, 1501–1510 (2005)

    Article  MATH  Google Scholar 

  22. Lebarbier E.: Detecting mutiple change-points in the mean of a Gaussian process by model selection. Signal Processing 85, 717–736 (2005)

    Article  MATH  Google Scholar 

  23. Lobry C., Sari T.: Nonstandard analysis and representation of reality. Int. J. Control 81, 517–534 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mallat S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Mboup M.: Parameter estimation for signals described by differential equations. Applicable Anal. 88, 29–52 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mboup, M.: A Volterra filter for neuronal spike detection. Preprint (2008). Available online at http://hal.inria.fr/inria-00347048/en/

  27. Mboup, M., Join, C., Fliess, M.: A delay estimation approach to change-point detection. In: 16th Medit. Conference Control Automat, Ajaccio (2008). Available online at http://hal.inria.fr/inria-00179775/en/

  28. McConnell, J., Robson, J.: Noncommutative Noetherian Rings. Amer. Math. Soc., Providence, RI (2000)

  29. Mikusinski J.: Operational Calculus, vol. 1, 2nd edn. PWN & Pergamon, Warsaw & Oxford (1983)

    Google Scholar 

  30. Mikusinski J., Boehme T.: Operational Calculus, vol. 2, 2nd edn. PWN & Pergamon, Warsaw & Oxford (1987)

    Google Scholar 

  31. Ollivier F., Moutaouakil S., Sadik B.: Une méthode d’identification pour un système linéaire à retards. C.R. Acad. Sci. Paris Ser. I 344, 709–714 (2007)

    MATH  MathSciNet  Google Scholar 

  32. Perlin K.: An image synthetizer. ACM SIGGRAPH Comput. Gr. 19, 287–296 (1985)

    Article  Google Scholar 

  33. Raimondo M., Tajvidi N.: A peaks over threshold model for change-points detection by wavelets. Statistica Sinica 14, 395–412 (2004)

    MATH  MathSciNet  Google Scholar 

  34. Rudolph J., Woittennek F.: Ein algebraischer Zugang zur Parameteridentifkation in linearen unendlichdimensionalen Systemen. Automatisierungstechnik 55, 457–467 (2007)

    Article  Google Scholar 

  35. Tiganj, Z., Mboup, M.: Spike detection and sorting: combining algebraic differentiations with ICA. In: 8th International Conference on Independent Component Analysis and Signal Separation. Paraty, Brazil (2009). Available online at http://hal.inria.fr/inria-00430438/en/

  36. Tourneret J.-Y., Doisy M., Lavielle M.: Bayesian off-line detection of multiple change-points corrupted by multiplicative noise: application to SAR image edge detection. Signal Processing 83, 1871–1887 (2003)

    Article  MATH  Google Scholar 

  37. van der Pol B., Bremmer H.: Operational Calculus Based on the Two-Sided Laplace Integral, 2nd edn. Cambridge University Press, Cambridge (1955)

    Google Scholar 

  38. van der Put M., Singer M.F.: Galois Theory of Linear Differential Equations. Springer, Berlin (2003)

    MATH  Google Scholar 

  39. Yosida K.: Operational Calculus: A Theory of Hyperfunctions (translated from the Japanese). Springer, Berlin (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Fliess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliess, M., Join, C. & Mboup, M. Algebraic change-point detection. AAECC 21, 131–143 (2010). https://doi.org/10.1007/s00200-010-0119-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-010-0119-z

Keywords

Navigation